These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33137033)

  • 21. Ultrabroadband (>2000 cm-1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source.
    Okuno M; Kano H; Leproux P; Couderc V; Hamaguchi HO
    Opt Lett; 2007 Oct; 32(20):3050-2. PubMed ID: 17938696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.
    Horan LE; Ruth AA; Gunning FC
    J Chem Phys; 2012 Dec; 137(22):224504. PubMed ID: 23249014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.
    Trabold BM; Hupfer RJR; Abdolvand A; St J Russell P
    Opt Lett; 2017 Sep; 42(17):3283-3286. PubMed ID: 28957084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering.
    Lee YJ; Parekh SH; Kim YH; Cicerone MT
    Opt Express; 2010 Mar; 18(5):4371-9. PubMed ID: 20389449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supercontinuum-based three-color three-pulse time-resolved coherent anti-Stokes Raman scattering.
    Zeytunyan A; Crampton KT; Zadoyan R; Apkarian VA
    Opt Express; 2015 Sep; 23(18):24019-28. PubMed ID: 26368493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency-shifted megawatt soliton output of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Raman scattering microspectroscopy.
    Ivanov AA; Podshivalov AA; Zheltikov AM
    Opt Lett; 2006 Nov; 31(22):3318-20. PubMed ID: 17072409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplex coherent anti-Stokes Raman scattering spectroscopy for trace chemical detection.
    Pilkington SB; Roberson SD; Pellegrino PM
    Appl Opt; 2017 Jan; 56(3):B159-B168. PubMed ID: 28157878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-frequency CARS imaging by switching fiber laser excitation.
    Rentchler EC; Xie R; Hui R; Johnson CK
    Microsc Res Tech; 2018 Apr; 81(4):413-418. PubMed ID: 29322588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Standoff Detection System Using Raman Spectroscopy in the Deep-Ultraviolet Wavelength Region for the Detection of Hazardous Gas.
    Eto S; Ichikawa Y; Ogita M; Sugimoto S; Asahi I
    Appl Spectrosc; 2022 Oct; 76(10):1246-1253. PubMed ID: 35354330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy.
    Andresen ER; Keiding SR; Potma EO
    Opt Express; 2006 Aug; 14(16):7246-51. PubMed ID: 19529094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-fiber single-cavity dual-comb for coherent anti-Stokes Raman scattering spectroscopy based on spectral focusing.
    Qin Y; Cromey B; Batjargal O; Kieu K
    Opt Lett; 2021 Jan; 46(1):146-149. PubMed ID: 33362037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering.
    Cui Y; Huang W; Li Z; Zhou Z; Wang Z
    Opt Express; 2019 Oct; 27(21):30396-30404. PubMed ID: 31684287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform.
    Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ
    Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent mode-selective Raman excitation towards standoff detection.
    Li H; Harris DA; Xu B; Wrzesinski PJ; Lozovoy VV; Dantus M
    Opt Express; 2008 Apr; 16(8):5499-504. PubMed ID: 18542653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system.
    DePaoli DT; Lapointe N; Messaddeq Y; Parent M; Côté DC
    Neurophotonics; 2018 Jul; 5(3):035005. PubMed ID: 30137924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous four-wave mixing in silicon nitride waveguides for broadband coherent anti-Stokes Raman scattering spectroscopy.
    Lüpken NM; Würthwein T; Epping JP; Boller KJ; Fallnich C
    Opt Lett; 2020 Jul; 45(14):3873-3876. PubMed ID: 32667307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift.
    Andresen ER; Birkedal V; Thøgersen J; Keiding SR
    Opt Lett; 2006 May; 31(9):1328-30. PubMed ID: 16642101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses.
    Chen K; Wu T; Wei H; Zhou T; Li Y
    Biomed Opt Express; 2016 Oct; 7(10):3927-3939. PubMed ID: 27867704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber.
    Couny F; Benabid F; Light PS
    Phys Rev Lett; 2007 Oct; 99(14):143903. PubMed ID: 17930673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.