These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33137063)

  • 21. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations.
    Nie YQ; Huang L; Liu Y; Payne F; Zhang J; Pan JW
    Rev Sci Instrum; 2015 Jun; 86(6):063105. PubMed ID: 26133826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. True random number generation based on temporal fluctuations of abalone shell coherent random lasers.
    Hu S; Li J; Gai B; Wu J; Cai X; Tan Y; Guo J
    Opt Lett; 2024 Sep; 49(17):4771-4774. PubMed ID: 39207960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole.
    Liu Y; Yuan X; Li MH; Zhang W; Zhao Q; Zhong J; Cao Y; Li YH; Chen LK; Li H; Peng T; Chen YA; Peng CZ; Shi SC; Wang Z; You L; Ma X; Fan J; Zhang Q; Pan JW
    Phys Rev Lett; 2018 Jan; 120(1):010503. PubMed ID: 29350962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single Photon Randomness based on a Defect Center in Diamond.
    Chen X; Greiner JN; Wrachtrup J; Gerhardt I
    Sci Rep; 2019 Dec; 9(1):18474. PubMed ID: 31804519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Error performance analysis of a non-ideal photon counting array receiver system for optical wireless communication.
    Wang C; Wang J; Xu Z; Wang R; Zhao J; Wei Y
    Appl Opt; 2018 Aug; 57(23):6651-6656. PubMed ID: 30129608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Random Number Generation Based on Multi-photon Detection.
    Aungskunsiri K; Jantarachote S; Wongpanya K; Amarit R; Punpetch P; Sumriddetchkajorn S
    ACS Omega; 2023 Sep; 8(38):35085-35092. PubMed ID: 37779994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient single-spatial-mode periodically-poled KTiOPO4 waveguide source for high-dimensional entanglement-based quantum key distribution.
    Zhong T; Wong FN; Restelli A; Bienfang JC
    Opt Express; 2012 Nov; 20(24):26868-77. PubMed ID: 23187540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-distance entanglement-based quantum key distribution experiment using practical detectors.
    Takesue H; Harada K; Tamaki K; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Itabashi S
    Opt Express; 2010 Aug; 18(16):16777-87. PubMed ID: 20721069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator.
    Guo X; Liu R; Li P; Cheng C; Wu M; Guo Y
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A High-Quality Entropy Source Using van der Waals Heterojunction for True Random Number Generation.
    Abraham N; Watanabe K; Taniguchi T; Majumdar K
    ACS Nano; 2022 Apr; 16(4):5898-5908. PubMed ID: 35416026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast quantum random number generation based on quantum phase fluctuations.
    Xu F; Qi B; Ma X; Xu H; Zheng H; Lo HK
    Opt Express; 2012 May; 20(11):12366-77. PubMed ID: 22714224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum random number generator based on twin beams.
    Zhang Q; Deng X; Tian C; Su X
    Opt Lett; 2017 Mar; 42(5):895-898. PubMed ID: 28248325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution.
    Liu MT; Lim HC
    Opt Express; 2014 Sep; 22(19):23261-75. PubMed ID: 25321795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum generators of random numbers.
    Jacak MM; Jóźwiak P; Niemczuk J; Jacak JE
    Sci Rep; 2021 Aug; 11(1):16108. PubMed ID: 34373502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a High Min-Entropy Quantum Random Number Generator Based on Amplified Spontaneous Emission.
    Duda CK; Meier KA; Newell RT
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation.
    Takahashi R; Akizawa Y; Uchida A; Harayama T; Tsuzuki K; Sunada S; Arai K; Yoshimura K; Davis P
    Opt Express; 2014 May; 22(10):11727-40. PubMed ID: 24921295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.
    Wang A; Wang L; Li P; Wang Y
    Opt Express; 2017 Feb; 25(4):3153-3164. PubMed ID: 28241531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum random number generator with discarding-boundary-bin measurement and multi-interval sampling.
    Lu Z; Liu J; Wang X; Wang P; Li Y; Peng K
    Opt Express; 2021 Apr; 29(8):12440-12453. PubMed ID: 33985003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation.
    Nguimdo RM; Tchitnga R; Woafo P
    Chaos; 2013 Dec; 23(4):043122. PubMed ID: 24387561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser.
    Zhang L; Pan B; Chen G; Guo L; Lu D; Zhao L; Wang W
    Sci Rep; 2017 Apr; 8():45900. PubMed ID: 28374860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.