These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33137372)

  • 1. Toward Biotherapeutics Formulation Composition Engineering using Site-Identification by Ligand Competitive Saturation (SILCS).
    Somani S; Jo S; Thirumangalathu R; Rodrigues D; Tanenbaum LM; Amin K; MacKerell AD; Thakkar SV
    J Pharm Sci; 2021 Mar; 110(3):1103-1110. PubMed ID: 33137372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Characterization of Antibody-Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach.
    Jo S; Xu A; Curtis JE; Somani S; MacKerell AD
    Mol Pharm; 2020 Nov; 17(11):4323-4333. PubMed ID: 32965126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction.
    Orr AA; Tao A; Guvench O; MacKerell AD
    Mol Pharm; 2023 May; 20(5):2600-2611. PubMed ID: 37017675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Product-Specific Impact of Viscosity Modulating Formulation Excipients During Ultra-High Concentration Biotherapeutics Drug Product Development.
    Rodrigues D; Tanenbaum LM; Thirumangalathu R; Somani S; Zhang K; Kumar V; Amin K; Thakkar SV
    J Pharm Sci; 2021 Mar; 110(3):1077-1082. PubMed ID: 33340533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ranking mAb-excipient interactions in biologics formulations by NMR spectroscopy and computational approaches.
    Zhang C; Gossert ST; Williams J; Little M; Barros M; Dear B; Falk B; Kanthe AD; Garmise R; Mueller L; Ilott A; Abraham A
    MAbs; 2023; 15(1):2212416. PubMed ID: 37218059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring protein-protein interactions using the site-identification by ligand competitive saturation methodology.
    Yu W; Jo S; Lakkaraju SK; Weber DJ; MacKerell AD
    Proteins; 2019 Apr; 87(4):289-301. PubMed ID: 30582220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations.
    Mousaei M; Kudaibergenova M; MacKerell AD; Noskov S
    J Chem Inf Model; 2020 Dec; 60(12):6489-6501. PubMed ID: 33196188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations.
    Raman EP; Yu W; Guvench O; Mackerell AD
    J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots).
    MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling.
    Yu W; Lakkaraju SK; Raman EP; MacKerell AD
    J Comput Aided Mol Des; 2014 May; 28(5):491-507. PubMed ID: 24610239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity.
    Cloutier TK; Sudrik C; Mody N; Hasige SA; Trout BL
    MAbs; 2020; 12(1):1816312. PubMed ID: 32938318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Protein-Excipient Interaction Hotspots Using Computational Approaches.
    Barata TS; Zhang C; Dalby PA; Brocchini S; Zloh M
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27258262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design.
    Goel H; Hazel A; Yu W; Jo S; MacKerell AD
    New J Chem; 2022 Jan; 46(3):919-932. PubMed ID: 35210743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
    Raman EP; Yu W; Lakkaraju SK; MacKerell AD
    J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fragment-based binding site identification by ligand competitive saturation.
    Guvench O; MacKerell AD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000435. PubMed ID: 19593374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization.
    Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD
    J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design.
    Cloutier TK; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2020 Sep; 17(9):3589-3599. PubMed ID: 32794710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules.
    Kognole AA; Hazel A; MacKerell AD
    J Chem Theory Comput; 2022 Sep; 18(9):5672-5691. PubMed ID: 35913731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.