These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33137519)
1. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. Zhang SJ; Liu L; Yang R; Wang X Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):321-332. PubMed ID: 33137519 [TBL] [Abstract][Full Text] [Related]
2. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species. Ma B; Kuang L; Xin Y; He N Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970574 [TBL] [Abstract][Full Text] [Related]
3. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. Qiu F; Ungerer MC BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730 [TBL] [Abstract][Full Text] [Related]
4. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098 [TBL] [Abstract][Full Text] [Related]
5. The pattern of amplification and differentiation of Ty1-copia and Ty3-gypsy retrotransposons in Brassicaceae species. Fujimoto R; Takuno S; Sasaki T; Nishio T Genes Genet Syst; 2008 Feb; 83(1):13-22. PubMed ID: 18379130 [TBL] [Abstract][Full Text] [Related]
6. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Zhang QJ; Gao LZ G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161 [TBL] [Abstract][Full Text] [Related]
7. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data. Tetreault HM; Ungerer MC G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
9. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics. Khan H; Yuan H; Liu X; Nie Y; Majid M BMC Genomics; 2024 Jul; 25(1):687. PubMed ID: 38997681 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. Aroh O; Halanych KM BMC Genomics; 2021 Jun; 22(1):466. PubMed ID: 34157969 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781 [TBL] [Abstract][Full Text] [Related]
13. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. Wang H; Liu JS BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433 [TBL] [Abstract][Full Text] [Related]
14. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Pereira V Genome Biol; 2004; 5(10):R79. PubMed ID: 15461797 [TBL] [Abstract][Full Text] [Related]
15. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Paz RC; Kozaczek ME; Rosli HG; Andino NP; Sanchez-Puerta MV Genetica; 2017 Oct; 145(4-5):417-430. PubMed ID: 28776161 [TBL] [Abstract][Full Text] [Related]
16. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Pietzenuk B; Markus C; Gaubert H; Bagwan N; Merotto A; Bucher E; Pecinka A Genome Biol; 2016 Oct; 17(1):209. PubMed ID: 27729060 [TBL] [Abstract][Full Text] [Related]
17. Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. Tubío JM; Naveira H; Costas J Mol Biol Evol; 2005 Jan; 22(1):29-39. PubMed ID: 15356275 [TBL] [Abstract][Full Text] [Related]
18. Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Friesen N; Brandes A; Heslop-Harrison JS Mol Biol Evol; 2001 Jul; 18(7):1176-88. PubMed ID: 11420359 [TBL] [Abstract][Full Text] [Related]
19. Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). Novikova O; Mayorov V; Smyshlyaev G; Fursov M; Adkison L; Pisarenko O; Blinov A Plant J; 2008 Nov; 56(4):562-74. PubMed ID: 18643967 [TBL] [Abstract][Full Text] [Related]
20. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]