These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33137704)
1. Probabilistic modelling of nanobiomaterial release from medical applications into the environment. Hauser M; Nowack B Environ Int; 2021 Jan; 146():106184. PubMed ID: 33137704 [TBL] [Abstract][Full Text] [Related]
2. Modelling local nanobiomaterial release and concentration hotspots in the environment. Hauser M; Nowack B Environ Pollut; 2021 Sep; 284():117399. PubMed ID: 34091260 [TBL] [Abstract][Full Text] [Related]
3. Short and long-term effects of nanobiomaterials in fish cell lines. Applicability of RTgill-W1. Hernández-Moreno D; Navas JM; Fernández-Cruz ML Chemosphere; 2022 Dec; 309(Pt 1):136636. PubMed ID: 36181847 [TBL] [Abstract][Full Text] [Related]
4. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512 [TBL] [Abstract][Full Text] [Related]
5. Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. Hauser M; Li G; Nowack B J Nanobiotechnology; 2019 Apr; 17(1):56. PubMed ID: 30992030 [TBL] [Abstract][Full Text] [Related]
6. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials. Sun TY; Mitrano DM; Bornhöft NA; Scheringer M; Hungerbühler K; Nowack B Environ Sci Technol; 2017 Mar; 51(5):2854-2863. PubMed ID: 28157288 [TBL] [Abstract][Full Text] [Related]
7. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
8. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538 [TBL] [Abstract][Full Text] [Related]
9. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Sun TY; Bornhöft NA; Hungerbühler K; Nowack B Environ Sci Technol; 2016 May; 50(9):4701-11. PubMed ID: 27043743 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. Mahapatra I; Sun TY; Clark JR; Dobson PJ; Hungerbuehler K; Owen R; Nowack B; Lead J J Nanobiotechnology; 2015 Dec; 13():93. PubMed ID: 26694868 [TBL] [Abstract][Full Text] [Related]
11. Iron Oxide (Magnetite)-Based Nanobiomaterial with Medical Applications-Environmental Hazard Assessment Using Terrestrial Model Species. Gomes SIL; Scott-Fordsmand JJ; Amorim MJB J Xenobiot; 2024 Feb; 14(1):285-294. PubMed ID: 38535492 [TBL] [Abstract][Full Text] [Related]
12. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Adam V; Caballero-Guzman A; Nowack B Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Sun TY; Gottschalk F; Hungerbühler K; Nowack B Environ Pollut; 2014 Feb; 185():69-76. PubMed ID: 24220022 [TBL] [Abstract][Full Text] [Related]
14. Dynamic probabilistic material flow analysis of nano-SiO Wang Y; Nowack B Environ Pollut; 2018 Apr; 235():589-601. PubMed ID: 29331892 [TBL] [Abstract][Full Text] [Related]
15. Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. Nene A; Galluzzi M; Hongrong L; Somani P; Ramakrishna S; Yu XF Nanoscale; 2021 Sep; 13(33):13923-13942. PubMed ID: 34477675 [TBL] [Abstract][Full Text] [Related]
16. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483 [TBL] [Abstract][Full Text] [Related]
17. Exposure modeling of engineered nanoparticles in the environment. Mueller NC; Nowack B Environ Sci Technol; 2008 Jun; 42(12):4447-53. PubMed ID: 18605569 [TBL] [Abstract][Full Text] [Related]
18. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment. Rong ZJ; Yang LJ; Cai BT; Zhu LX; Cao YL; Wu GF; Zhang ZJ J Mater Sci Mater Med; 2016 May; 27(5):89. PubMed ID: 26975746 [TBL] [Abstract][Full Text] [Related]
19. Probabilistic modeling of the flows and environmental risks of nano-silica. Wang Y; Kalinina A; Sun T; Nowack B Sci Total Environ; 2016 Mar; 545-546():67-76. PubMed ID: 26745294 [TBL] [Abstract][Full Text] [Related]
20. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]