These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33137707)

  • 1. Tissue engineering solutions to replace contractile function during pediatric heart surgery.
    Williams SK; Birla RK
    Tissue Cell; 2020 Dec; 67():101452. PubMed ID: 33137707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac tissue engineering: implications for pediatric heart surgery.
    Zimmermann WH; Cesnjevar R
    Pediatr Cardiol; 2009 Jul; 30(5):716-23. PubMed ID: 19319461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renovation of the injured heart with myocardial tissue engineering.
    Leor J; Landa N; Cohen S
    Expert Rev Cardiovasc Ther; 2006 Mar; 4(2):239-52. PubMed ID: 16509819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the heart piece by piece: state of the art in cardiac tissue engineering.
    Hecker L; Birla RK
    Regen Med; 2007 Mar; 2(2):125-44. PubMed ID: 17465746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac tissue engineering for replacement therapy.
    Zimmermann WH; Eschenhagen T
    Heart Fail Rev; 2003 Jul; 8(3):259-69. PubMed ID: 12878835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic patterning for fabrication of contractile cardiac organoids.
    Khademhosseini A; Eng G; Yeh J; Kucharczyk PA; Langer R; Vunjak-Novakovic G; Radisic M
    Biomed Microdevices; 2007 Apr; 9(2):149-57. PubMed ID: 17146728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stimulation in the engineering of heart muscle.
    Liaw NY; Zimmermann WH
    Adv Drug Deliv Rev; 2016 Jan; 96():156-60. PubMed ID: 26362920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in biological pumps as a building block for bioartificial hearts.
    Brimmer S; Ji P; Birla AK; Keswani SG; Caldarone CA; Birla RK
    Front Bioeng Biotechnol; 2023; 11():1061622. PubMed ID: 36741765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically contractile polymers augment right ventricular output in the heart.
    Ruhparwar A; Piontek P; Ungerer M; Ghodsizad A; Partovi S; Foroughi J; Szabo G; Farag M; Karck M; Spinks GM; Kim SJ
    Artif Organs; 2014 Dec; 38(12):1034-9. PubMed ID: 24689769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cells, scaffolds, and molecules for myocardial tissue engineering.
    Leor J; Amsalem Y; Cohen S
    Pharmacol Ther; 2005 Feb; 105(2):151-63. PubMed ID: 15670624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autologous cell transplantation and cardiac tissue engineering: potential applications in heart failure.
    Tran N; Li Y; Bertrand S; Bangratz S; Carteaux JP; Stoltz JF; Villemot JP
    Biorheology; 2003; 40(1-3):411-5. PubMed ID: 12454434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.
    Wang B; Patnaik SS; Brazile B; Butler JR; Claude A; Zhang G; Guan J; Hong Y; Liao J
    Crit Rev Biomed Eng; 2015; 43(5-6):455-71. PubMed ID: 27480586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery.
    Kofidis T; Akhyari P; Wachsmann B; Boublik J; Mueller-Stahl K; Leyh R; Fischer S; Haverich A
    Eur J Cardiothorac Surg; 2002 Aug; 22(2):238-43. PubMed ID: 12142192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling.
    Freed LE; Guilak F; Guo XE; Gray ML; Tranquillo R; Holmes JW; Radisic M; Sefton MV; Kaplan D; Vunjak-Novakovic G
    Tissue Eng; 2006 Dec; 12(12):3285-305. PubMed ID: 17518670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.
    Schroer AK; Shotwell MS; Sidorov VY; Wikswo JP; Merryman WD
    Acta Biomater; 2017 Jan; 48():79-87. PubMed ID: 27818306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodological nine-step process to bioengineer heart muscle tissue.
    Birla RK
    Tissue Cell; 2020 Dec; 67():101425. PubMed ID: 32853859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease.
    Noguchi R; Nakayama K; Itoh M; Kamohara K; Furukawa K; Oyama JI; Node K; Morita S
    J Heart Lung Transplant; 2016 Jan; 35(1):137-145. PubMed ID: 26433566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural history and patterns of recovery of contractile function in single left ventricle after Fontan operation.
    Sluysmans T; Sanders SP; van der Velde M; Matitiau A; Parness IA; Spevak PJ; Mayer JE; Colan SD
    Circulation; 1992 Dec; 86(6):1753-61. PubMed ID: 1451247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.