BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 33137722)

  • 1. Toward principled regularization of deep networks-From weight decay to feature contraction.
    Maki A
    Sci Robot; 2019 May; 4(30):. PubMed ID: 33137722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regularization of deep neural networks with spectral dropout.
    Khan SH; Hayat M; Porikli F
    Neural Netw; 2019 Feb; 110():82-90. PubMed ID: 30504041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks.
    Rannen Triki A; Blaschko MB; Jung YM; Song S; Han HJ; Kim SI; Joo C
    Comput Med Imaging Graph; 2018 Nov; 69():21-32. PubMed ID: 30172090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of adaptive SVD regularization for deep neural networks.
    Bejani MM; Ghatee M
    Neural Netw; 2020 Aug; 128():33-46. PubMed ID: 32413786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new formulation for feedforward neural networks.
    Razavi S; Tolson BA
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1588-98. PubMed ID: 21859600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification.
    Ren Y; Tsai MY; Chen L; Wang J; Li S; Liu Y; Jia X; Shen C
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):287-295. PubMed ID: 31768885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
    Chai R; Ling SH; San PP; Naik GR; Nguyen TN; Tran Y; Craig A; Nguyen HT
    Front Neurosci; 2017; 11():103. PubMed ID: 28326009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse Manifold-Regularized Neural Networks for Polarimetric SAR Terrain Classification.
    Liu H; Shang F; Yang S; Gong M; Zhu T; Jiao L
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):3007-3016. PubMed ID: 31536019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness.
    Jin P; Lu L; Tang Y; Karniadakis GE
    Neural Netw; 2020 Oct; 130():85-99. PubMed ID: 32650153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Tikhonov regularization for function approximation by neural networks.
    Burger M; Neubauer A
    Neural Netw; 2003 Jan; 16(1):79-90. PubMed ID: 12576108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The convergence analysis of SpikeProp algorithm with smoothing L
    Zhao J; Zurada JM; Yang J; Wu W
    Neural Netw; 2018 Jul; 103():19-28. PubMed ID: 29625353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.
    Poernomo A; Kang DK
    Neural Netw; 2018 Aug; 104():60-67. PubMed ID: 29715684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?
    Karnuta JM; Navarro SM; Haeberle HS; Helm JM; Kamath AF; Schaffer JL; Krebs VE; Ramkumar PN
    J Arthroplasty; 2019 Oct; 34(10):2235-2241.e1. PubMed ID: 31230954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shakeout: A New Approach to Regularized Deep Neural Network Training.
    Kang G; Li J; Tao D
    IEEE Trans Pattern Anal Mach Intell; 2018 May; 40(5):1245-1258. PubMed ID: 28489533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural networks for texture classification-A theoretical analysis.
    Basu S; Mukhopadhyay S; Karki M; DiBiano R; Ganguly S; Nemani R; Gayaka S
    Neural Netw; 2018 Jan; 97():173-182. PubMed ID: 29126070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedforward neural network models for handling class overlap and class imbalance.
    Kretzschmar R; Karayiannis NB; Eggimann F
    Int J Neural Syst; 2005 Oct; 15(5):323-38. PubMed ID: 16278937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the regularization of forgetting recursive least square.
    Leung CS; Young GH; Sum J; Kan WK
    IEEE Trans Neural Netw; 1999; 10(6):1482-6. PubMed ID: 18252649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.