These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33137769)

  • 1. A myoelectric prosthetic hand with muscle synergy-based motion determination and impedance model-based biomimetic control.
    Furui A; Eto S; Nakagaki K; Shimada K; Nakamura G; Masuda A; Chin T; Tsuji T
    Sci Robot; 2019 Jun; 4(31):. PubMed ID: 33137769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand.
    Kim KT; Park S; Lim TH; Lee SJ
    Front Neurosci; 2021; 15():733359. PubMed ID: 34712114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject.
    Mastinu E; Ahlberg J; Lendaro E; Hermansson L; Hakansson B; Ortiz-Catalan M
    IEEE J Transl Eng Health Med; 2018; 6():2600112. PubMed ID: 29637030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can We Achieve Intuitive Prosthetic Elbow Control Based on Healthy Upper Limb Motor Strategies?
    Merad M; de Montalivet É; Touillet A; Martinet N; Roby-Brami A; Jarrassé N
    Front Neurorobot; 2018; 12():1. PubMed ID: 29456499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Parent Wireless Assistive Interface for Myoelectric Prosthetic Hands for Children.
    Hiyoshi Y; Murai Y; Yabuki Y; Takahana K; Morishita S; Jiang Y; Togo S; Takayama S; Yokoi H
    Front Neurorobot; 2018; 12():48. PubMed ID: 30116188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic myoelectric hand with voluntary control of finger angle and compliance.
    Okuno R; Akazawa K; Yoshida M
    Front Med Biol Eng; 1999; 9(3):199-210. PubMed ID: 10612560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences.
    Zuniga J; Katsavelis D; Peck J; Stollberg J; Petrykowski M; Carson A; Fernandez C
    BMC Res Notes; 2015 Jan; 8():10. PubMed ID: 25601104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric control of prosthetic hands: state-of-the-art review.
    Geethanjali P
    Med Devices (Auckl); 2016; 9():247-55. PubMed ID: 27555799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finger motion classification by forearm skin surface vibration signals.
    Yu W; Kishi T; Acharya UR; Horiuchi Y; Gonzalez J
    Open Med Inform J; 2010 May; 4():31-40. PubMed ID: 20694155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realizing Efficient EMG-Based Prosthetic Control Strategy.
    Li G; Samuel OW; Lin C; Asogbon MG; Fang P; Idowu PO
    Adv Exp Med Biol; 2019; 1101():149-166. PubMed ID: 31729675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand motion discrimination by EMG signals without incorrect discriminations that elbow motions cause.
    Kawashima H; Tsujiuchi N; Koizumi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2103-7. PubMed ID: 19163111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-Temporal Inertial Measurements Feature Extraction Improves Hand Movement Pattern Recognition without Electromyography.
    Khushaba RN; Krasoulis A; Al-Jumaily A; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2108-2111. PubMed ID: 30440819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prosthetic hand control using motion discrimination from EMG signals.
    Kurisu N; Tsujiuchi N; Koizumi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6922-5. PubMed ID: 19964457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control.
    Earley EJ; Hargrove LJ; Kuiken TA
    Front Neurosci; 2016; 10():58. PubMed ID: 26941599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascertaining the optimal myoelectric signal recording duration for pattern recognition based prostheses control.
    Asogbon MG; Samuel OW; Nsugbe E; Li Y; Kulwa F; Mzurikwao D; Chen S; Li G
    Front Neurosci; 2023; 17():1018037. PubMed ID: 36908798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical outcomes of a low-cost single-channel myoelectric-interface three-dimensional hand prosthesis.
    Ku I; Lee GK; Park CY; Lee J; Jeong E
    Arch Plast Surg; 2019 Jul; 46(4):303-310. PubMed ID: 31336417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.