These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Soft Robotic Finger with Energy-Coupled Quadrastability. Sun Z; Jiang T; Wang Z; Jiang P; Yang Y; Li H; Ma T; Luo J Soft Robot; 2024 Feb; 11(1):140-156. PubMed ID: 37646782 [TBL] [Abstract][Full Text] [Related]
46. Universally Grasping Objects with Granular-Tendon Finger: Principle and Design. Nguyen VP; Dhyan SB; Han BS; Chow WT Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512781 [TBL] [Abstract][Full Text] [Related]
47. A Novel Fabric-Based Versatile and Stiffness-Tunable Soft Gripper Integrating Soft Pneumatic Fingers and Wrist. Fei Y; Wang J; Pang W Soft Robot; 2019 Feb; 6(1):1-20. PubMed ID: 30312144 [TBL] [Abstract][Full Text] [Related]
48. Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Wang Y; Yang Z; Zhou H; Zhao C; Barimah B; Li B; Xiang C; Li L; Gou X; Luo M Soft Robot; 2022 Apr; 9(2):309-323. PubMed ID: 34107751 [TBL] [Abstract][Full Text] [Related]
49. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds. Gil M; Ramil F; AgÍs JA Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142 [TBL] [Abstract][Full Text] [Related]
50. Design and Feasibility Tests of a Lightweight Soft Gripper for Compliant and Flexible Envelope Grasping. Zhang P; Chen W; Tang B Soft Robot; 2022 Apr; 9(2):376-385. PubMed ID: 34097551 [TBL] [Abstract][Full Text] [Related]
51. An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water. Gong Z; Chen B; Liu J; Fang X; Liu Z; Wang T; Wen L Front Robot AI; 2019; 6():26. PubMed ID: 33501042 [TBL] [Abstract][Full Text] [Related]
52. Fluid Pressure Monitoring-Based Strategy for Delicate Grasping of Fragile Objects by A Robotic Hand with Fluid Fingertips. Nishimura T; Suzuki Y; Tsuji T; Watanabe T Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769839 [TBL] [Abstract][Full Text] [Related]
53. Rigid-Soft Interactive Design of a Lobster-Inspired Finger Surface for Enhanced Grasping Underwater. Jiang H; Han X; Jing Y; Guo N; Wan F; Song C Front Robot AI; 2021; 8():787187. PubMed ID: 35004865 [TBL] [Abstract][Full Text] [Related]
54. A 3D-Printable Robotic Gripper Based on Thick Panel Origami. Liu C; Maiolino P; You Z Front Robot AI; 2021; 8():730227. PubMed ID: 34568438 [TBL] [Abstract][Full Text] [Related]
55. Grasping state estimation of printable soft gripper using electro-conductive yarn. Matsuno T; Wang Z; Hirai S Robotics Biomim; 2017; 4(1):13. PubMed ID: 29170727 [TBL] [Abstract][Full Text] [Related]
56. Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects. Liu CH; Chen TL; Chiu CH; Hsu MC; Chen Y; Pai TY; Peng WG; Chiang YP Soft Robot; 2018 Aug; 5(4):452-465. PubMed ID: 29741987 [TBL] [Abstract][Full Text] [Related]
57. Twining plant inspired pneumatic soft robotic spiral gripper with a fiber optic twisting sensor. Yang M; Cooper LP; Liu N; Wang X; Fok MP Opt Express; 2020 Nov; 28(23):35158-35167. PubMed ID: 33182967 [TBL] [Abstract][Full Text] [Related]
58. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Wang W; Ahn SH Soft Robot; 2017 Dec; 4(4):379-389. PubMed ID: 29251571 [TBL] [Abstract][Full Text] [Related]