These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33137832)

  • 1. Maximal Lactate Accumulation Rate in All-out Exercise Differs between Cycling and Running.
    Quittmann OJ; Schwarz YM; Mester J; Foitschik T; Abel T; Strüder HK
    Int J Sports Med; 2021 Apr; 42(4):314-322. PubMed ID: 33137832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal lactate accumulation rate and post-exercise lactate kinetics in handcycling and cycling.
    Quittmann OJ; Abel T; Vafa R; Mester J; Schwarz YM; Strüder HK
    Eur J Sport Sci; 2021 Apr; 21(4):539-551. PubMed ID: 32290796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a sport-specific field test to determine maximal lactate accumulation rate and sprint performance parameters in running.
    Quittmann OJ; Appelhans D; Abel T; Strüder HK
    J Sci Med Sport; 2020 Jan; 23(1):27-34. PubMed ID: 31477377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate kinetics in handcycling under various exercise modalities and their relationship to performance measures in able-bodied participants.
    Quittmann OJ; Abel T; Zeller S; Foitschik T; Strüder HK
    Eur J Appl Physiol; 2018 Jul; 118(7):1493-1505. PubMed ID: 29725756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heart Rate-based Lactate Minimum Test in Running and Cycling.
    Perret C; Hartmann K
    Int J Sports Med; 2021 Jul; 42(9):812-817. PubMed ID: 33506446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological differences between cycling and running: lessons from triathletes.
    Millet GP; Vleck VE; Bentley DJ
    Sports Med; 2009; 39(3):179-206. PubMed ID: 19290675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological profile of best Czech male and female young triathletes.
    Bunc V; Heller J; Horcic J; Novotny J
    J Sports Med Phys Fitness; 1996 Dec; 36(4):265-70. PubMed ID: 9062050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of calculated and experimental power in maximal lactate-steady state during cycling.
    Hauser T; Adam J; Schulz H
    Theor Biol Med Model; 2014 May; 11():25. PubMed ID: 24886168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of sprint triathlon performance from laboratory tests.
    Van Schuylenbergh R; Eynde BV; Hespel P
    Eur J Appl Physiol; 2004 Jan; 91(1):94-9. PubMed ID: 12955517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of prior incremental cycle exercise on the physiological responses during incremental running to exhaustion: relevance for sprint triathlon performance.
    Bentley DJ; McNaughton LR; Lamyman R; Roberts SP
    J Sports Sci; 2003 Jan; 21(1):29-38. PubMed ID: 12587889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-induced arterial hypoxemia is not different during cycling and running in triathletes.
    Laursen PB; Rhodes EC; Langill RH; Taunton JE; McKenzie DC
    Scand J Med Sci Sports; 2005 Apr; 15(2):113-7. PubMed ID: 15773866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes.
    Zwingmann L; Strütt S; Martin A; Volmary P; Bloch W; Wahl P
    Phys Sportsmed; 2019 May; 47(2):174-181. PubMed ID: 30408426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time to exhaustion at maximal lactate steady state is similar for cycling and running in moderately trained subjects.
    Fontana P; Boutellier U; Knöpfli-Lenzin C
    Eur J Appl Physiol; 2009 Sep; 107(2):187-92. PubMed ID: 19551404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate minimum test during incremental running after a submaximal cycling exercise: a novel test with training applications for triathletes.
    Vicente-Campous D; Barbado C; Nuñez MJ; Chicharro JL
    J Sports Med Phys Fitness; 2014 Dec; 54(6):742-9. PubMed ID: 25350031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gross and delta efficiencies during uphill running and cycling among elite triathletes.
    Carlsson M; Wahrenberg V; Carlsson MS; Andersson R; Carlsson T
    Eur J Appl Physiol; 2020 May; 120(5):961-968. PubMed ID: 32236753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Cycling vs. Running Training on Endurance Performance in Preparation for Inline Speed Skating.
    Stangier C; Abel T; Hesse C; Claen S; Mierau J; Hollmann W; Strüder HK
    J Strength Cond Res; 2016 Jun; 30(6):1597-606. PubMed ID: 26479024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of ionized and nonionized compression garments on sprint and endurance cycling.
    Burden RJ; Glaister M
    J Strength Cond Res; 2012 Oct; 26(10):2837-43. PubMed ID: 22124356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes.
    Vikmoen O; Rønnestad BR; Ellefsen S; Raastad T
    Physiol Rep; 2017 Mar; 5(5):. PubMed ID: 28292885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the cycling performance of cyclists and triathletes.
    Laursen PB; Shing CM; Tennant SC; Prentice CM; Jenkins DG
    J Sports Sci; 2003 May; 21(5):411-8. PubMed ID: 12800863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fat oxidation in men and women endurance athletes in running and cycling.
    Knechtle B; Müller G; Willmann F; Kotteck K; Eser P; Knecht H
    Int J Sports Med; 2004 Jan; 25(1):38-44. PubMed ID: 14750011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.