BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 33138004)

  • 1. Autophagy and Lc3-Associated Phagocytosis in Zebrafish Models of Bacterial Infections.
    Muñoz-Sánchez S; van der Vaart M; Meijer AH
    Cells; 2020 Oct; 9(11):. PubMed ID: 33138004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The autophagic response to
    Prajsnar TK; Serba JJ; Dekker BM; Gibson JF; Masud S; Fleming A; Johnston SA; Renshaw SA; Meijer AH
    Autophagy; 2021 Apr; 17(4):888-902. PubMed ID: 32174246
    [No Abstract]   [Full Text] [Related]  

  • 3. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model.
    Masud S; Prajsnar TK; Torraca V; Lamers GEM; Benning M; Van Der Vaart M; Meijer AH
    Autophagy; 2019 May; 15(5):796-812. PubMed ID: 30676840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubicon-Dependent Lc3 Recruitment to
    Masud S; van der Burg L; Storm L; Prajsnar TK; Meijer AH
    Front Cell Infect Microbiol; 2019; 9():279. PubMed ID: 31428591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective autophagy receptors Optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection.
    Zhang R; Varela M; Vallentgoed W; Forn-Cuni G; van der Vaart M; Meijer AH
    PLoS Pathog; 2019 Feb; 15(2):e1007329. PubMed ID: 30818338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenophagy receptors Optn and p62 and autophagy modulator Dram1 independently promote the zebrafish host defense against
    Xie J; Meijer AH
    Front Cell Infect Microbiol; 2023; 13():1331818. PubMed ID: 38264729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrophils use selective autophagy receptor Sqstm1/p62 to target
    Gibson JF; Prajsnar TK; Hill CJ; Tooke AK; Serba JJ; Tonge RD; Foster SJ; Grierson AJ; Ingham PW; Renshaw SA; Johnston SA
    Autophagy; 2021 Jun; 17(6):1448-1457. PubMed ID: 32559122
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Grijmans BJM; van der Kooij SB; Varela M; Meijer AH
    Front Cell Infect Microbiol; 2021; 11():809121. PubMed ID: 35047422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DRAM1 promotes the targeting of mycobacteria to selective autophagy.
    Meijer AH; van der Vaart M
    Autophagy; 2014; 10(12):2389-91. PubMed ID: 25484076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy.
    Mostowy S; Boucontet L; Mazon Moya MJ; Sirianni A; Boudinot P; Hollinshead M; Cossart P; Herbomel P; Levraud JP; Colucci-Guyon E
    PLoS Pathog; 2013; 9(9):e1003588. PubMed ID: 24039575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model.
    Hosseini R; Lamers GE; Hodzic Z; Meijer AH; Schaaf MJ; Spaink HP
    Autophagy; 2014 Oct; 10(10):1844-57. PubMed ID: 25126731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis.
    Forn-Cuní G; Welvaarts L; Stel FM; van den Hondel CJ; Arentshorst M; Ram A; Meijer AH
    Autophagy; 2023 Jan; 19(1):324-337. PubMed ID: 35775203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LC3-associated phagocytosis: host defense and microbial response.
    Upadhyay S; Philips JA
    Curr Opin Immunol; 2019 Oct; 60():81-90. PubMed ID: 31247378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of pathogenic bacteria with autophagy systems.
    Cemma M; Brumell JH
    Curr Biol; 2012 Jul; 22(13):R540-5. PubMed ID: 22790007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected].
    van der Vaart M; Korbee CJ; Lamers GE; Tengeler AC; Hosseini R; Haks MC; Ottenhoff TH; Spaink HP; Meijer AH
    Cell Host Microbe; 2014 Jun; 15(6):753-67. PubMed ID: 24922577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LC3-associated phagocytosis in microbial pathogenesis.
    Schille S; Crauwels P; Bohn R; Bagola K; Walther P; van Zandbergen G
    Int J Med Microbiol; 2018 Jan; 308(1):228-236. PubMed ID: 29169848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NLRX1 Facilitates
    Huang JH; Liu CY; Wu SY; Chen WY; Chang TH; Kan HW; Hsieh ST; Ting JP; Wu-Hsieh BA
    Front Immunol; 2018; 9():2761. PubMed ID: 30559741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy and Its Interaction With Intracellular Bacterial Pathogens.
    Siqueira MDS; Ribeiro RM; Travassos LH
    Front Immunol; 2018; 9():935. PubMed ID: 29875765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rubicon: LC3-associated phagocytosis and beyond.
    Wong SW; Sil P; Martinez J
    FEBS J; 2018 Apr; 285(8):1379-1388. PubMed ID: 29215797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis.
    Hubber A; Kubori T; Coban C; Matsuzawa T; Ogawa M; Kawabata T; Yoshimori T; Nagai H
    Sci Rep; 2017 Mar; 7():44795. PubMed ID: 28317932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.