These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33138004)

  • 1. Autophagy and Lc3-Associated Phagocytosis in Zebrafish Models of Bacterial Infections.
    Muñoz-Sánchez S; van der Vaart M; Meijer AH
    Cells; 2020 Oct; 9(11):. PubMed ID: 33138004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The autophagic response to
    Prajsnar TK; Serba JJ; Dekker BM; Gibson JF; Masud S; Fleming A; Johnston SA; Renshaw SA; Meijer AH
    Autophagy; 2021 Apr; 17(4):888-902. PubMed ID: 32174246
    [No Abstract]   [Full Text] [Related]  

  • 3. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model.
    Masud S; Prajsnar TK; Torraca V; Lamers GEM; Benning M; Van Der Vaart M; Meijer AH
    Autophagy; 2019 May; 15(5):796-812. PubMed ID: 30676840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rubicon-Dependent Lc3 Recruitment to
    Masud S; van der Burg L; Storm L; Prajsnar TK; Meijer AH
    Front Cell Infect Microbiol; 2019; 9():279. PubMed ID: 31428591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective autophagy receptors Optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection.
    Zhang R; Varela M; Vallentgoed W; Forn-Cuni G; van der Vaart M; Meijer AH
    PLoS Pathog; 2019 Feb; 15(2):e1007329. PubMed ID: 30818338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophils use selective autophagy receptor Sqstm1/p62 to target
    Gibson JF; Prajsnar TK; Hill CJ; Tooke AK; Serba JJ; Tonge RD; Foster SJ; Grierson AJ; Ingham PW; Renshaw SA; Johnston SA
    Autophagy; 2021 Jun; 17(6):1448-1457. PubMed ID: 32559122
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Grijmans BJM; van der Kooij SB; Varela M; Meijer AH
    Front Cell Infect Microbiol; 2021; 11():809121. PubMed ID: 35047422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DRAM1 promotes the targeting of mycobacteria to selective autophagy.
    Meijer AH; van der Vaart M
    Autophagy; 2014; 10(12):2389-91. PubMed ID: 25484076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy.
    Mostowy S; Boucontet L; Mazon Moya MJ; Sirianni A; Boudinot P; Hollinshead M; Cossart P; Herbomel P; Levraud JP; Colucci-Guyon E
    PLoS Pathog; 2013; 9(9):e1003588. PubMed ID: 24039575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model.
    Hosseini R; Lamers GE; Hodzic Z; Meijer AH; Schaaf MJ; Spaink HP
    Autophagy; 2014 Oct; 10(10):1844-57. PubMed ID: 25126731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis.
    Forn-Cuní G; Welvaarts L; Stel FM; van den Hondel CJ; Arentshorst M; Ram A; Meijer AH
    Autophagy; 2023 Jan; 19(1):324-337. PubMed ID: 35775203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LC3-associated phagocytosis: host defense and microbial response.
    Upadhyay S; Philips JA
    Curr Opin Immunol; 2019 Oct; 60():81-90. PubMed ID: 31247378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of pathogenic bacteria with autophagy systems.
    Cemma M; Brumell JH
    Curr Biol; 2012 Jul; 22(13):R540-5. PubMed ID: 22790007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected].
    van der Vaart M; Korbee CJ; Lamers GE; Tengeler AC; Hosseini R; Haks MC; Ottenhoff TH; Spaink HP; Meijer AH
    Cell Host Microbe; 2014 Jun; 15(6):753-67. PubMed ID: 24922577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LC3-associated phagocytosis in microbial pathogenesis.
    Schille S; Crauwels P; Bohn R; Bagola K; Walther P; van Zandbergen G
    Int J Med Microbiol; 2018 Jan; 308(1):228-236. PubMed ID: 29169848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NLRX1 Facilitates
    Huang JH; Liu CY; Wu SY; Chen WY; Chang TH; Kan HW; Hsieh ST; Ting JP; Wu-Hsieh BA
    Front Immunol; 2018; 9():2761. PubMed ID: 30559741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy and Its Interaction With Intracellular Bacterial Pathogens.
    Siqueira MDS; Ribeiro RM; Travassos LH
    Front Immunol; 2018; 9():935. PubMed ID: 29875765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubicon: LC3-associated phagocytosis and beyond.
    Wong SW; Sil P; Martinez J
    FEBS J; 2018 Apr; 285(8):1379-1388. PubMed ID: 29215797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis.
    Hubber A; Kubori T; Coban C; Matsuzawa T; Ogawa M; Kawabata T; Yoshimori T; Nagai H
    Sci Rep; 2017 Mar; 7():44795. PubMed ID: 28317932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LC3-Associated Phagocytosis and Inflammation.
    Heckmann BL; Boada-Romero E; Cunha LD; Magne J; Green DR
    J Mol Biol; 2017 Nov; 429(23):3561-3576. PubMed ID: 28847720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.