These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33138230)
21. Effects of Power and Laser Speed on the Mechanical Properties of AlSi7Mg0.6 Manufactured by Laser Powder Bed Fusion. Vaudreuil S; Bencaid SE; Vanaei HR; El Magri A Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500137 [TBL] [Abstract][Full Text] [Related]
22. Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion. Lee ER; Shin SE; Takata N; Kobashi M; Kato M Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899494 [TBL] [Abstract][Full Text] [Related]
23. Influence of Pre- and Post-Contouring Strategies to Downskin Sloped Surfaces in Laser Powder-Bed Fusion (L-PBF) Additive Manufacturing. Valiyakath Vadakkan Habeeb N; Islam R; Chou K Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893903 [TBL] [Abstract][Full Text] [Related]
24. Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion. Lin HY; Tran HC; Lo YL; Le TN; Chiu KC; Hsu YY 3D Print Addit Manuf; 2023 Aug; 10(4):732-748. PubMed ID: 37609594 [TBL] [Abstract][Full Text] [Related]
25. Dataset of process-structure-property feature relationships for AlSi10Mg material fabricated using laser powder bed fusion additive manufacturing. Luo Q; Huang N; Fu T; Wang J; Bartles DL; Simpson TW; Beese AM Data Brief; 2024 Apr; 53():110130. PubMed ID: 38348317 [TBL] [Abstract][Full Text] [Related]
26. Process-Structure-Property Relationships of Copper Parts Manufactured by Laser Powder Bed Fusion. Abdelhafiz M; Al-Rubaie KS; Emadi A; Elbestawi MA Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072548 [TBL] [Abstract][Full Text] [Related]
27. Surface Roughness of Interior Fine Flow Channels in Selective Laser Melted Ti-6Al-4V Alloy Components. Islam SA; Hao L; Javaid Z; Xiong W; Li Y; Jamil Y; Chen Q; Han G Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542595 [TBL] [Abstract][Full Text] [Related]
28. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters. Akwaboa S; Zeng C; Amoafo-Yeboah N; Ibekwe S; Mensah P Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512194 [TBL] [Abstract][Full Text] [Related]
29. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing. Weaver JS; Schlenoff A; Deisenroth D; Moylan S Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812 [TBL] [Abstract][Full Text] [Related]
30. Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion. Arısoy YM; Criales LE; Özel T; Lane B; Moylan S; Donmez A Int J Adv Manuf Technol; 2017; 90(5-8):. PubMed ID: 37056292 [TBL] [Abstract][Full Text] [Related]
31. Laser Powder Bed Fusion Process Parameters' Optimization for Fabrication of Dense IN 625. Paraschiv A; Matache G; Condruz MR; Frigioescu TF; Pambaguian L Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013913 [TBL] [Abstract][Full Text] [Related]
32. Influence of Powder Deposition on Powder Bed and Specimen Properties. Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274 [TBL] [Abstract][Full Text] [Related]
33. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Obeidi MA; McCarthy E; O'Connell B; Ul Ahad I; Brabazon D Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917513 [TBL] [Abstract][Full Text] [Related]
34. Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical properties. Bergmueller S; Kaserer L; Fuchs L; Braun J; Weinberger N; Letofsky-Papst I; Leichtfried G Heliyon; 2022 Aug; 8(8):e10171. PubMed ID: 36033262 [TBL] [Abstract][Full Text] [Related]
35. Achieving the Minimum Roughness of Laser Milled Micro-Impressions on Ti 6Al 4V, Inconel 718, and Duralumin. Ahmed N; Rehman AU; Ishfaq K; Naveed R; Moiduddin K; Umer U; E Ragab A; Al-Zabidi A Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33053899 [TBL] [Abstract][Full Text] [Related]
36. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy. Han X; Zhu H; Nie X; Wang G; Zeng X Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29518900 [TBL] [Abstract][Full Text] [Related]
37. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders. Shoji Aota L; Bajaj P; Zschommler Sandim HR; Aimé Jägle E Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899864 [TBL] [Abstract][Full Text] [Related]
38. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing. Yeung H; Lane B Manuf Lett; 2020; 25():. PubMed ID: 34123726 [TBL] [Abstract][Full Text] [Related]
39. Uncertainties Induced by Processing Parameter Variation in Selective Laser Melting of Ti6Al4V Revealed by In-Situ X-ray Imaging. Young ZA; Coday MM; Guo Q; Qu M; Hojjatzadeh SMH; Escano LI; Fezzaa K; Sun T; Chen L Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057247 [TBL] [Abstract][Full Text] [Related]
40. Improving Laser Powder Bed Fusion Printability of Tungsten Powders Using Simulation-Driven Process Optimization Algorithms. Leclercq A; Brailovski V Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673222 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]