BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33138263)

  • 1. Characterization of Soft Tooling Photopolymers and Processes for Micromixing Devices with Variable Cross-Section.
    Martínez-López JI; Betancourt Cervantes HA; Cuevas Iturbe LD; Vázquez E; Naula EA; Martínez López A; Siller HR; Mendoza-Buenrostro C; Rodríguez CA
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers.
    Martínez-López JI; Mojica M; Rodríguez CA; Siller HR
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27196904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Stereolithography Printed Soft Tooling for Micro Injection Molding.
    Dempsey D; McDonald S; Masato D; Barry C
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32872383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions.
    Tony A; Badea I; Yang C; Liu Y; Wells G; Wang K; Yin R; Zhang H; Zhang W
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers.
    Zeraatkar M; de Tullio MD; Percoco G
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for 3D Printed Tools: Mechanical Material Properties for Direct Polymer Additive Tooling.
    Frohn-Sörensen P; Geueke M; Engel B; Löffler B; Bickendorf P; Asimi A; Bergweiler G; Schuh G
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durability of Vacuum Infusion Tooling Produced from Fused Granular Fabrication Additive Manufacturing.
    Northrup N; Weaver JM; George AR
    3D Print Addit Manuf; 2024 Apr; 11(2):508-516. PubMed ID: 38689908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, Simulation of Temperatures, and Experimentation in Injection Molds Obtained through Additive Manufacturing with Photocurable Polymeric Resins.
    Benitez-Lozano A; Vargas-Isaza C; Montealegre-Rubio W
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Use of Additive Manufacturing Techniques in the Development of Polymeric Molds: A Review.
    Pelin G; Sonmez M; Pelin CE
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-Skin Development and Prototyping via Soft Tooling and Composites with Silicone Rubber and Carbon Nanotubes.
    García-Ávila J; Rodríguez CA; Vargas-Martínez A; Ramírez-Cedillo E; Martínez-López JI
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of PDMS Microchannels Using Horizontally or Vertically Formed 3D-Printed Molds by Digital Light Projection.
    Han DH; Oh U; Park JK
    ACS Omega; 2023 May; 8(21):19128-19136. PubMed ID: 37273587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Soft Tooling Process Chain for Injection Molding of a 3D Component with Micro Pillars.
    Zhang Y; Pedersen DB; Mischkot M; Calaon M; Baruffi F; Tosello G
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.