These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33138263)

  • 21. Feasibility Study of Soft Tooling Inserts for Injection Molding with Integrated Automated Slides.
    Vieten T; Stahl D; Schilling P; Civelek F; Zimmermann A
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative characterization of micromixing simulation.
    Zhang Z; Yim C; Lin M; Cao X
    Biomicrofluidics; 2008 Aug; 2(3):34104. PubMed ID: 19693371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft Tooling-Friendly Inductive Mold Heating-A Novel Concept.
    Vieten T; Zanin D; Knöller A; Litwin T; Eberhardt W; Zimmermann A
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33920745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet.
    Zhou R; Surendran AN; Mejulu M; Lin Y
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31881667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle Tracking and Micromixing Performance Characterization with a Mobile Device.
    Naula Duchi EA; Betancourt Cervantes HA; Yañez Espinosa CR; Rodríguez CA; Garza-Castañon LE; Martínez López JI
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It?
    Venzac B; Deng S; Mahmoud Z; Lenferink A; Costa A; Bray F; Otto C; Rolando C; Le Gac S
    Anal Chem; 2021 May; 93(19):7180-7187. PubMed ID: 33961394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design.
    Simmons DW; Schuftan DR; Ramahdita G; Huebsch N
    ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile microfabrication of three dimensional-patterned micromixers using additive manufacturing technology.
    Koo D; So H
    Sci Rep; 2022 Apr; 12(1):6346. PubMed ID: 35428793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of 3D-Printed Moulds for Soft Lithography of Millifluidic Devices.
    Mohd Fuad N; Carve M; Kaslin J; Wlodkowic D
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.
    Compera N; Atwell S; Wirth J; Wolfrum B; Meier M
    Lab Chip; 2021 Aug; 21(15):2986-2996. PubMed ID: 34143169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printing of Cell Culture Devices: Assessment and Prevention of the Cytotoxicity of Photopolymers for Stereolithography.
    Kreß S; Schaller-Ammann R; Feiel J; Priedl J; Kasper C; Egger D
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32640644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices.
    Piironen K; Haapala M; Talman V; Järvinen P; Sikanen T
    Lab Chip; 2020 Jun; 20(13):2372-2382. PubMed ID: 32500123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production.
    Behroodi E; Latifi H; Bagheri Z; Ermis E; Roshani S; Salehi Moghaddam M
    Sci Rep; 2020 Dec; 10(1):22171. PubMed ID: 33335148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.