These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33138263)

  • 61. Experimental Characterization Framework for SLA Additive Manufacturing Materials.
    Martín-Montal J; Pernas-Sánchez J; Varas D
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918461
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of Personalized Non-Invasive Ventilation Interfaces for Neonatal and Pediatric Application Using Additive Manufacturing.
    Bockstedte M; Xepapadeas AB; Spintzyk S; Poets CF; Koos B; Aretxabaleta M
    J Pers Med; 2022 Apr; 12(4):. PubMed ID: 35455720
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 3D printed microfluidic devices for lipid bilayer recordings.
    Ogishi K; Osaki T; Morimoto Y; Takeuchi S
    Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simple and low-cost production of hybrid 3D-printed microfluidic devices.
    Duong LH; Chen PC
    Biomicrofluidics; 2019 Mar; 13(2):024108. PubMed ID: 31065307
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Non-Sacrificial 3D Printing Process for Fabricating Integrated Micro/Mesoscale Molds.
    Ghaznavi A; Xu J; Hara SA
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512674
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Controlling Shapes in a Coaxial Flow Focusing Microfluidic Device: Experiments and Theory.
    Rodriguez-Trujillo R; Kim-Im YH; Hernandez-Machado A
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940964
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding.
    Glick CC; Srimongkol MT; Schwartz AJ; Zhuang WS; Lin JC; Warren RH; Tekell DR; Satamalee PA; Lin L
    Microsyst Nanoeng; 2016; 2():16063. PubMed ID: 31057842
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control.
    Markov DA; Manuel S; Shor LM; Opalenik SR; Wikswo JP; Samson PC
    Biomed Microdevices; 2010 Feb; 12(1):135-44. PubMed ID: 19859812
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 71. 3D Printed Embedded Metamaterials.
    Zhang KP; Liao YF; Qiu B; Zheng YK; Yu LK; He GH; Chen QN; Sun DH
    Small; 2021 Dec; 17(50):e2103262. PubMed ID: 34672425
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing.
    Srinivasaraghavan Govindarajan R; Sikulskyi S; Ren Z; Stark T; Kim D
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006101
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Micromixing within microfluidic devices: Fundamentals, design, and fabrication.
    Cai S; Jin Y; Lin Y; He Y; Zhang P; Ge Z; Yang W
    Biomicrofluidics; 2023 Dec; 17(6):061503. PubMed ID: 38098692
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Wettability and Surface Roughness of Parylene C on Three-Dimensional-Printed Photopolymers.
    Hsieh FC; Huang CY; Lu YP
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744218
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fabrication of 3D-printed molds for polydimethylsiloxane-based microfluidic devices using a liquid crystal display-based vat photopolymerization process: printing quality, drug response and 3D invasion cell culture assays.
    Poskus MD; Wang T; Deng Y; Borcherding S; Atkinson J; Zervantonakis IK
    Microsyst Nanoeng; 2023; 9():140. PubMed ID: 37954040
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluating surface coatings to reduce bone cement adhesion to point of care 3D printed molds in the intraoperative setting.
    Beitler B; Roytman GR; Parmer G; Tommasini SM; Wiznia DH
    3D Print Med; 2022 Aug; 8(1):28. PubMed ID: 35960406
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Increasing Silicone Mold Longevity: A Review of Surface Modification Techniques for PDMS-PDMS Double Casting.
    Ansari A; Trehan R; Watson C; Senyo S
    Soft Mater; 2021; 19(4):388-399. PubMed ID: 35035304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.