These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Peripheral modifications of [Ψ[CH Okano A; Isley NA; Boger DL Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5052-E5061. PubMed ID: 28559345 [TBL] [Abstract][Full Text] [Related]
3. Vancomycin C-Terminus Guanidine Modifications and Further Insights into an Added Mechanism of Action Imparted by a Peripheral Structural Modification. Wu ZC; Cameron MD; Boger DL ACS Infect Dis; 2020 Aug; 6(8):2169-2180. PubMed ID: 32598127 [TBL] [Abstract][Full Text] [Related]
4. Total syntheses and initial evaluation of [Ψ[C(═S)NH]Tpg⁴]vancomycin, [Ψ[C(═NH)NH]Tpg⁴]vancomycin, [Ψ[CH₂NH]Tpg⁴]vancomycin, and their (4-chlorobiphenyl)methyl derivatives: synergistic binding pocket and peripheral modifications for the glycopeptide antibiotics. Okano A; Nakayama A; Wu K; Lindsey EA; Schammel AW; Feng Y; Collins KC; Boger DL J Am Chem Soc; 2015 Mar; 137(10):3693-704. PubMed ID: 25750995 [TBL] [Abstract][Full Text] [Related]
5. Redesign of glycopeptide antibiotics: back to the future. James RC; Pierce JG; Okano A; Xie J; Boger DL ACS Chem Biol; 2012 May; 7(5):797-804. PubMed ID: 22330049 [TBL] [Abstract][Full Text] [Related]
6. Total synthesis of [Ψ[C(═NH)NH]Tpg(4)]vancomycin and its (4-chlorobiphenyl)methyl derivative: impact of peripheral modifications on vancomycin analogues redesigned for dual D-Ala-D-Ala and D-Ala-D-Lac binding. Okano A; Nakayama A; Schammel AW; Boger DL J Am Chem Soc; 2014 Oct; 136(39):13522-5. PubMed ID: 25211770 [TBL] [Abstract][Full Text] [Related]
7. A redesigned vancomycin engineered for dual D-Ala-D-ala And D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. Xie J; Pierce JG; James RC; Okano A; Boger DL J Am Chem Soc; 2011 Sep; 133(35):13946-9. PubMed ID: 21823662 [TBL] [Abstract][Full Text] [Related]
8. Quantum simulations of the structure and binding of glycopeptide antibiotic aglycons to cell wall analogues. Lee JG; Sagui C; Roland C J Phys Chem B; 2005 Nov; 109(43):20588-96. PubMed ID: 16853665 [TBL] [Abstract][Full Text] [Related]
9. C1-CBP-vancomycin: Impact of a Vancomycin C-Terminus Trimethylammonium Cation on Pharmacological Properties and Insights into Its Newly Introduced Mechanism of Action. Wu ZC; Isley NA; Okano A; Weiss WJ; Boger DL J Org Chem; 2020 Feb; 85(3):1365-1375. PubMed ID: 31670958 [TBL] [Abstract][Full Text] [Related]
10. Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. Xie J; Okano A; Pierce JG; James RC; Stamm S; Crane CM; Boger DL J Am Chem Soc; 2012 Jan; 134(2):1284-97. PubMed ID: 22188323 [TBL] [Abstract][Full Text] [Related]
11. Novel semi-synthetic glycopeptide antibiotics active against methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE): doubly-modified water-soluble derivatives of chloroorienticin B. Yoshida O; Yasukata T; Sumino Y; Munekage T; Narukawa Y; Nishitani Y Bioorg Med Chem Lett; 2002 Nov; 12(21):3027-31. PubMed ID: 12372494 [TBL] [Abstract][Full Text] [Related]
12. Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Ottonello A; Wyllie JA; Yahiaoui O; Sun S; Koelln RA; Homer JA; Johnson RM; Murray E; Williams P; Bolla JR; Robinson CV; Fallon T; Soares da Costa TP; Moses JE Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2208737120. PubMed ID: 37011186 [TBL] [Abstract][Full Text] [Related]
13. Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin. Münch D; Engels I; Müller A; Reder-Christ K; Falkenstein-Paul H; Bierbaum G; Grein F; Bendas G; Sahl HG; Schneider T Antimicrob Agents Chemother; 2015 Feb; 59(2):772-81. PubMed ID: 25403671 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of vancomycin resistance. Stogios PJ; Savchenko A Protein Sci; 2020 Mar; 29(3):654-669. PubMed ID: 31899563 [TBL] [Abstract][Full Text] [Related]
15. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Ge M; Chen Z; Onishi HR; Kohler J; Silver LL; Kerns R; Fukuzawa S; Thompson C; Kahne D Science; 1999 Apr; 284(5413):507-11. PubMed ID: 10205063 [TBL] [Abstract][Full Text] [Related]
16. Reengineering Antibiotics to Combat Bacterial Resistance: Click Chemistry [1,2,3]-Triazole Vancomycin Dimers with Potent Activity against MRSA and VRE. Silverman SM; Moses JE; Sharpless KB Chemistry; 2017 Jan; 23(1):79-83. PubMed ID: 27747932 [TBL] [Abstract][Full Text] [Related]
17. Total Syntheses of Vancomycin-Related Glycopeptide Antibiotics and Key Analogues. Okano A; Isley NA; Boger DL Chem Rev; 2017 Sep; 117(18):11952-11993. PubMed ID: 28437097 [TBL] [Abstract][Full Text] [Related]
18. Substrate Inhibition of VanA by d-Alanine Reduces Vancomycin Resistance in a VanX-Dependent Manner. van der Aart LT; Lemmens N; van Wamel WJ; van Wezel GP Antimicrob Agents Chemother; 2016 Aug; 60(8):4930-9. PubMed ID: 27270282 [TBL] [Abstract][Full Text] [Related]
19. Differential inhibition of Staphylococcus aureus PBP2 by glycopeptide antibiotics. Leimkuhler C; Chen L; Barrett D; Panzone G; Sun B; Falcone B; Oberthür M; Donadio S; Walker S; Kahne D J Am Chem Soc; 2005 Mar; 127(10):3250-1. PubMed ID: 15755121 [TBL] [Abstract][Full Text] [Related]
20. Divergent Total Synthesis and Characterization of Maxamycins. Moore MJ; Qin P; Keith DJ; Wu ZC; Jung S; Chatterjee S; Tan C; Qu S; Cai Y; Stanfield RL; Boger DL J Am Chem Soc; 2023 Jun; 145(23):12837-12852. PubMed ID: 37278486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]