These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33138375)
21. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products. Fang Y; Liu F; Klippenstein SJ; Lester MI J Chem Phys; 2016 Jul; 145(4):044312. PubMed ID: 27475366 [TBL] [Abstract][Full Text] [Related]
22. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Huang HL; Chao W; Lin JJ Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390 [TBL] [Abstract][Full Text] [Related]
23. Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory. Vansco MF; Zuraski K; Winiberg FAF; Au K; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI; Caravan RL Molecules; 2021 May; 26(10):. PubMed ID: 34065491 [TBL] [Abstract][Full Text] [Related]
24. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products. Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475 [TBL] [Abstract][Full Text] [Related]
25. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy. Smith MC; Chao W; Takahashi K; Boering KA; Lin JJ J Phys Chem A; 2016 Jul; 120(27):4789-98. PubMed ID: 26985985 [TBL] [Abstract][Full Text] [Related]
26. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products. Green AM; Barber VP; Fang Y; Klippenstein SJ; Lester MI Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12372-12377. PubMed ID: 29109292 [TBL] [Abstract][Full Text] [Related]
27. Direct Kinetic Measurements of a Cyclic Criegee Intermediate; Unimolecular Decomposition of Peltola J; Heinonen P; Eskola A J Phys Chem Lett; 2024 May; 15(20):5331-5336. PubMed ID: 38727747 [TBL] [Abstract][Full Text] [Related]
28. Large Pressure Effects Caused by Internal Rotation in the Xia Y; Long B; Lin S; Teng C; Bao JL; Truhlar DG J Am Chem Soc; 2022 Mar; 144(11):4828-4838. PubMed ID: 35262353 [TBL] [Abstract][Full Text] [Related]
29. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling. Drozd GT; Kurtén T; Donahue NM; Lester MI J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269 [TBL] [Abstract][Full Text] [Related]
30. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH Peltola J; Seal P; Inkilä A; Eskola A Phys Chem Chem Phys; 2020 Jun; 22(21):11797-11808. PubMed ID: 32347242 [TBL] [Abstract][Full Text] [Related]
31. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy. Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776 [TBL] [Abstract][Full Text] [Related]
32. Photodissociation dynamics of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. Wang G; Liu T; Caracciolo A; Vansco MF; Trongsiriwat N; Walsh PJ; Marchetti B; Karsili TNV; Lester MI J Chem Phys; 2021 Nov; 155(17):174305. PubMed ID: 34742186 [TBL] [Abstract][Full Text] [Related]
33. Unimolecular Kinetics of Stabilized CH Robinson C; Onel L; Newman J; Lade R; Au K; Sheps L; Heard DE; Seakins PW; Blitz MA; Stone D J Phys Chem A; 2022 Oct; 126(39):6984-6994. PubMed ID: 36146923 [TBL] [Abstract][Full Text] [Related]
34. OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions. Liu T; Elliott SN; Zou M; Vansco MF; Sojdak CA; Markus CR; Almeida R; Au K; Sheps L; Osborn DL; Winiberg FAF; Percival CJ; Taatjes CA; Caravan RL; Klippenstein SJ; Lester MI J Am Chem Soc; 2023 Sep; 145(35):19405-19420. PubMed ID: 37623926 [TBL] [Abstract][Full Text] [Related]
35. Deep tunneling in the unimolecular decay of CH Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI J Chem Phys; 2016 Dec; 145(23):234308. PubMed ID: 28010089 [TBL] [Abstract][Full Text] [Related]
36. Kinetics of the Gas-Phase Reactions of Lade RE; Onel L; Blitz MA; Seakins PW; Stone D J Phys Chem A; 2024 Apr; 128(14):2815-2824. PubMed ID: 38551990 [TBL] [Abstract][Full Text] [Related]
37. Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate. Hansen AS; Qian Y; Sojdak CA; Kozlowski MC; Esposito VJ; Francisco JS; Klippenstein SJ; Lester MI J Am Chem Soc; 2022 Apr; 144(13):5945-5955. PubMed ID: 35344666 [TBL] [Abstract][Full Text] [Related]
38. Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer. Smith MC; Chang CH; Chao W; Lin LC; Takahashi K; Boering KA; Lin JJ J Phys Chem Lett; 2015 Jul; 6(14):2708-13. PubMed ID: 26266852 [TBL] [Abstract][Full Text] [Related]
40. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol. Kuo MT; Yang JN; Lin JJ; Takahashi K J Phys Chem A; 2021 Aug; 125(30):6580-6590. PubMed ID: 34314585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]