These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33138385)

  • 1. Interface-Controlled Thermal Rectification Phenomenon of Monolayer Graphene/Boron Nitride Heterosheet.
    Zhuang S; Liu Y
    J Phys Chem Lett; 2020 Nov; 11(22):9731-9737. PubMed ID: 33138385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Chen XK; Pang M; Chen T; Du D; Chen KQ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15517-15526. PubMed ID: 32153173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of strain and defects on the thermal conductance of the graphene/hexagonal boron nitride interface.
    Song J; Xu Z; He X; Cai C; Bai Y; Miao L; Wang R
    Phys Chem Chem Phys; 2020 May; 22(20):11537-11545. PubMed ID: 32393941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene and 2D Hexagonal Boron Nitride Heterostructure for Thermal Management in Actively Tunable Manner.
    Sun H; Jiang Y; Hua R; Huang R; Shi L; Dong Y; Liang S; Ni J; Zhang C; Dong R; Song Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of thermal energy transport across the graphene/h-BN heterostructure interface.
    Liu F; Zou R; Hu N; Ning H; Yan C; Liu Y; Wu L; Mo F; Fu S
    Nanoscale; 2019 Mar; 11(9):4067-4072. PubMed ID: 30778431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet.
    Hong Y; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2016 Sep; 18(35):24164-70. PubMed ID: 27531348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride.
    Li Y; Wei A; Ye H; Yao H
    Nanoscale; 2018 Feb; 10(7):3497-3508. PubMed ID: 29404556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure.
    Zhang J; Wang X; Hong Y; Xiong Q; Jiang J; Yue Y
    Nanotechnology; 2017 Jan; 28(3):035404. PubMed ID: 27966468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study of thermal rectification in suspended monolayer graphene.
    Wang H; Hu S; Takahashi K; Zhang X; Takamatsu H; Chen J
    Nat Commun; 2017 Jun; 8():15843. PubMed ID: 28607493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable Interface Junction, In-Plane Heterostructures Capable of Mechanically Mediating On-Demand Asymmetry of Thermal Transports.
    Gao Y; Xu B
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34506-34517. PubMed ID: 28895714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-carbon nitride interface-geometry effects on thermal rectification: a molecular dynamics simulation.
    Farzadian O; Spitas C; Kostas KV
    Nanotechnology; 2021 Mar; 32(21):215403. PubMed ID: 33661761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial thermal conductance between atomically thin boron nitride and graphene.
    Yu QV; Watanabe K; Taniguchi T; Li LH
    Nanoscale; 2022 Dec; 15(1):122-126. PubMed ID: 36504234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties.
    Li Q; Liu M; Zhang Y; Liu Z
    Small; 2016 Jan; 12(1):32-50. PubMed ID: 26439677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface formation in monolayer graphene-boron nitride heterostructures.
    Sutter P; Cortes R; Lahiri J; Sutter E
    Nano Lett; 2012 Sep; 12(9):4869-74. PubMed ID: 22871166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary.
    Liu M; Li Y; Chen P; Sun J; Ma D; Li Q; Gao T; Gao Y; Cheng Z; Qiu X; Fang Y; Zhang Y; Liu Z
    Nano Lett; 2014 Nov; 14(11):6342-7. PubMed ID: 25268563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable, Multifunctional Ceramic Composites via Intercalation of Fused Graphene Boron Nitride Nanosheets.
    Hosseini E; Zakertabrizi M; Habibnejad Korayem A; Shahsavari R
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8635-8644. PubMed ID: 30719919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-carbon nitride interface-geometry effectson thermal rectification: A molecular dynamicssimulation.
    Farzadian O; Spitas C; Kostas K
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33601345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride.
    Lu J; Gomes LC; Nunes RW; Castro Neto AH; Loh KP
    Nano Lett; 2014 Sep; 14(9):5133-9. PubMed ID: 25083603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.