These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 33138446)
1. Bifurcations and chaos in a Lorenz-like pilot-wave system. Durey M Chaos; 2020 Oct; 30(10):103115. PubMed ID: 33138446 [TBL] [Abstract][Full Text] [Related]
2. Anomalous transport of a classical wave-particle entity in a tilted potential. Valani RN Phys Rev E; 2022 Jan; 105(1):L012101. PubMed ID: 35193237 [TBL] [Abstract][Full Text] [Related]
3. Lorenz-like systems emerging from an integro-differential trajectory equation of a one-dimensional wave-particle entity. Valani RN Chaos; 2022 Feb; 32(2):023129. PubMed ID: 35232028 [TBL] [Abstract][Full Text] [Related]
4. Pilot-wave dynamics: Using dynamic mode decomposition to characterize bifurcations, routes to chaos, and emergent statistics. Kutz JN; Nachbin A; Baddoo PJ; Bush JWM Phys Rev E; 2023 Sep; 108(3-1):034213. PubMed ID: 37849115 [TBL] [Abstract][Full Text] [Related]
5. Unsteady dynamics of a classical particle-wave entity. Valani RN; Slim AC; Paganin DM; Simula TP; Vo T Phys Rev E; 2021 Jul; 104(1-2):015106. PubMed ID: 34412331 [TBL] [Abstract][Full Text] [Related]
6. Classical pilot-wave dynamics: The free particle. Durey M; Bush JWM Chaos; 2021 Mar; 31(3):033136. PubMed ID: 33810713 [TBL] [Abstract][Full Text] [Related]
7. Introduction to focus issue on hydrodynamic quantum analogs. Bush JWM; Couder Y; Gilet T; Milewski PA; Nachbin A Chaos; 2018 Sep; 28(9):096001. PubMed ID: 30278632 [TBL] [Abstract][Full Text] [Related]
8. Infinite-memory classical wave-particle entities, attractor-driven active particles, and the diffusionless Lorenz equations. Valani RN Chaos; 2024 Jan; 34(1):. PubMed ID: 38252778 [TBL] [Abstract][Full Text] [Related]
9. Dynamics, interference effects, and multistability in a Lorenz-like system of a classical wave-particle entity in a periodic potential. Perks J; Valani RN Chaos; 2023 Mar; 33(3):033147. PubMed ID: 37003812 [TBL] [Abstract][Full Text] [Related]
11. Dynamics, emergent statistics, and the mean-pilot-wave potential of walking droplets. Durey M; Milewski PA; Bush JWM Chaos; 2018 Sep; 28(9):096108. PubMed ID: 30278646 [TBL] [Abstract][Full Text] [Related]
12. Walking droplets in a circular corral: Quantisation and chaos. Cristea-Platon T; Sáenz PJ; Bush JWM Chaos; 2018 Sep; 28(9):096116. PubMed ID: 30278624 [TBL] [Abstract][Full Text] [Related]
13. State space geometry of the chaotic pilot-wave hydrodynamics. Budanur NB; Fleury M Chaos; 2019 Jan; 29(1):013122. PubMed ID: 30709150 [TBL] [Abstract][Full Text] [Related]
14. A hydrodynamic analog of Friedel oscillations. Sáenz PJ; Cristea-Platon T; Bush JWM Sci Adv; 2020 May; 6(20):eaay9234. PubMed ID: 32440541 [TBL] [Abstract][Full Text] [Related]
15. Crises and chaotic scattering in hydrodynamic pilot-wave experiments. Choueiri G; Suri B; Merrin J; Serbyn M; Hof B; Budanur NB Chaos; 2022 Sep; 32(9):093138. PubMed ID: 36182399 [TBL] [Abstract][Full Text] [Related]
16. Lorenz-like systems and classical dynamical equations with memory forcing: an alternate point of view for singling out the origin of chaos. Festa R; Mazzino A; Vincenzi D Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046205. PubMed ID: 12005974 [TBL] [Abstract][Full Text] [Related]
17. Collective vibrations of a hydrodynamic active lattice. Thomson SJ; Durey M; Rosales RR Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20200155. PubMed ID: 32831612 [TBL] [Abstract][Full Text] [Related]
18. Pilot-wave dynamics of two identical, in-phase bouncing droplets. Valani RN; Slim AC Chaos; 2018 Sep; 28(9):096114. PubMed ID: 30278618 [TBL] [Abstract][Full Text] [Related]