These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33138759)

  • 1. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review.
    Charoenkwan P; Anuwongcharoen N; Nantasenamat C; Hasan MM; Shoombuatong W
    Curr Pharm Des; 2021; 27(18):2180-2188. PubMed ID: 33138759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2.
    Manavalan B; Basith S; Lee G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34595489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance.
    Chowdhury AS; Reehl SM; Kehn-Hall K; Bishop B; Webb-Robertson BM
    Sci Rep; 2020 Nov; 10(1):19260. PubMed ID: 33159146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy.
    Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm.
    Ullah M; Akbar S; Raza A; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches.
    Pang Y; Yao L; Jhong JH; Wang Z; Lee TY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34279599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FFMAVP: a new classifier based on feature fusion and multitask learning for identifying antiviral peptides and their subclasses.
    Cao R; Hu W; Wei P; Ding Y; Bin Y; Zheng C
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.
    Akbar S; Raza A; Zou Q
    BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural antimicrobial peptides as a source of new antiviral agents.
    Zakaryan H; Chilingaryan G; Arabyan E; Serobian A; Wang G
    J Gen Virol; 2021 Sep; 102(9):. PubMed ID: 34554085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction for understanding the effectiveness of antiviral peptides.
    Nath A
    Comput Biol Chem; 2021 Dec; 95():107588. PubMed ID: 34655913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Machine Learning-Based Models for Prediction of Antiviral Peptides.
    Ali F; Kumar H; Alghamdi W; Kateb FA; Alarfaj FK
    Arch Comput Methods Eng; 2023 Apr; ():1-12. PubMed ID: 37359746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model.
    Kurata H; Tsukiyama S; Manavalan B
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35772910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AntiVPP 1.0: A portable tool for prediction of antiviral peptides.
    Beltrán Lissabet JF; Belén LH; Farias JG
    Comput Biol Med; 2019 Apr; 107():127-130. PubMed ID: 30802694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AVPpred: collection and prediction of highly effective antiviral peptides.
    Thakur N; Qureshi A; Kumar M
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W199-204. PubMed ID: 22638580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides.
    Lefin N; Herrera-Belén L; Farias JG; Beltrán JF
    Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features.
    Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Lio' P; Shoombuatong W
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDVEIP: A computer-aided approach for the prediction of viral entry inhibitory peptides.
    Kao HJ; Weng TH; Chen CH; Chen YC; Huang KY; Weng SL
    Proteomics; 2024 May; 24(9):e2300257. PubMed ID: 38263811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoinformatics and Machine Learning Approaches for Identifying Antiviral Compounds.
    John L; Soujanya Y; Mahanta HJ; Narahari Sastry G
    Mol Inform; 2022 Apr; 41(4):e2100190. PubMed ID: 34811938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.