These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33138776)

  • 1. Label-free quantitative proteomic analysis of alfalfa in response to microRNA156 under high temperature.
    Arshad M; Puri A; Simkovich AJ; Renaud J; Gruber MY; Marsolais F; Hannoufa A
    BMC Genomics; 2020 Nov; 21(1):758. PubMed ID: 33138776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa.
    Gao R; Austin RS; Amyot L; Hannoufa A
    BMC Genomics; 2016 Aug; 17(1):658. PubMed ID: 27542359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alfalfa transcriptome profiling provides insight into miR156-mediated molecular mechanisms of heat stress tolerance.
    Arshad M; Hannoufa A
    Genome; 2022 Jun; 65(6):315-330. PubMed ID: 35298891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress.
    Arshad M; Gruber MY; Hannoufa A
    Sci Rep; 2018 Jun; 8(1):9363. PubMed ID: 29921939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13.
    Arshad M; Feyissa BA; Amyot L; Aung B; Hannoufa A
    Plant Sci; 2017 May; 258():122-136. PubMed ID: 28330556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alfalfa response to heat stress is modulated by microRNA156.
    Matthews C; Arshad M; Hannoufa A
    Physiol Plant; 2019 Apr; 165(4):830-842. PubMed ID: 29923601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the miR156/SPL module in flooding response in Medicago sativa.
    Feyissa BA; Amyot L; Nasrollahi V; Papadopoulos Y; Kohalmi SE; Hannoufa A
    Sci Rep; 2021 Feb; 11(1):3243. PubMed ID: 33547346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA156 as a promising tool for alfalfa improvement.
    Aung B; Gruber MY; Amyot L; Omari K; Bertrand A; Hannoufa A
    Plant Biotechnol J; 2015 Aug; 13(6):779-90. PubMed ID: 25532560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Characterization of the miR156/MsSPL Model in Regulating the Compound Leaf Development and Abiotic Stress Response in Alfalfa.
    Min X; Luo K; Liu W; Zhou K; Li J; Wei Z
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa.
    Feyissa BA; Arshad M; Gruber MY; Kohalmi SE; Hannoufa A
    BMC Plant Biol; 2019 Oct; 19(1):434. PubMed ID: 31638916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa.
    Arshad M; Gruber MY; Wall K; Hannoufa A
    Front Plant Sci; 2017; 8():356. PubMed ID: 28352280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the role of SPL12 and AGL6 from a genetic module that functions in nodulation and root regeneration in Medicago sativa.
    Nasrollahi V; Yuan ZC; Lu QSM; McDowell T; Kohalmi SE; Hannoufa A
    Plant Mol Biol; 2022 Dec; 110(6):511-529. PubMed ID: 35976552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPL13 regulates shoot branching and flowering time in Medicago sativa.
    Gao R; Gruber MY; Amyot L; Hannoufa A
    Plant Mol Biol; 2018 Jan; 96(1-2):119-133. PubMed ID: 29149417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa.
    Aung B; Gao R; Gruber MY; Yuan ZC; Sumarah M; Hannoufa A
    Transgenic Res; 2017 Aug; 26(4):541-557. PubMed ID: 28547343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (
    Zeng N; Yang Z; Zhang Z; Hu L; Chen L
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Role of
    Hanly A; Karagiannis J; Lu QSM; Tian L; Hannoufa A
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis.
    Kim JJ; Lee JH; Kim W; Jung HS; Huijser P; Ahn JH
    Plant Physiol; 2012 May; 159(1):461-78. PubMed ID: 22427344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa.
    Wang Z; Su G; Li M; Ke Q; Kim SY; Li H; Huang J; Xu B; Deng XP; Kwak SS
    Plant Physiol Biochem; 2016 Dec; 109():199-208. PubMed ID: 27721135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome-IPMS analysis reveals a tissue-dependent miR156/SPL13 regulatory mechanism in alfalfa drought tolerance.
    Feyissa BA; Renaud J; Nasrollahi V; Kohalmi SE; Hannoufa A
    BMC Genomics; 2020 Oct; 21(1):721. PubMed ID: 33076837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa.
    Ling L; An Y; Wang D; Tang L; Du B; Shu Y; Bai Y; Guo C
    Plant Physiol Biochem; 2022 Jan; 170():146-159. PubMed ID: 34891071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.