BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1936 related articles for article (PubMed ID: 33138918)

  • 1. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Automated Organoid Workflows with Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond.
    Renner H; Schöler HR; Bruder JM
    Mov Disord; 2021 Dec; 36(12):2745-2762. PubMed ID: 34498298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids.
    Maas RGC; Beekink T; Chirico N; Snijders Blok CJB; Dokter I; Sampaio-Pinto V; van Mil A; Doevendans PA; Buikema JW; Sluijter JPG; Stillitano F
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36971448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and Maintenance of Homogeneous Human Midbrain Organoids.
    Renner H; Grabos M; Schöler HR; Bruder JM
    Bio Protoc; 2021 Jun; 11(11):e4049. PubMed ID: 34291121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.
    Czerniecki SM; Cruz NM; Harder JL; Menon R; Annis J; Otto EA; Gulieva RE; Islas LV; Kim YK; Tran LM; Martins TJ; Pippin JW; Fu H; Kretzler M; Shankland SJ; Himmelfarb J; Moon RT; Paragas N; Freedman BS
    Cell Stem Cell; 2018 Jun; 22(6):929-940.e4. PubMed ID: 29779890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening.
    Du Y; Li X; Niu Q; Mo X; Qui M; Ma T; Kuo CJ; Fu H
    J Mol Cell Biol; 2020 Aug; 12(8):630-643. PubMed ID: 32678871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.
    Jo J; Xiao Y; Sun AX; Cukuroglu E; Tran HD; Göke J; Tan ZY; Saw TY; Tan CP; Lokman H; Lee Y; Kim D; Ko HS; Kim SO; Park JH; Cho NJ; Hyde TM; Kleinman JE; Shin JH; Weinberger DR; Tan EK; Je HS; Ng HH
    Cell Stem Cell; 2016 Aug; 19(2):248-257. PubMed ID: 27476966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paraxial mesoderm organoids model development of human somites.
    Budjan C; Liu S; Ranga A; Gayen S; Pourquié O; Hormoz S
    Elife; 2022 Jan; 11():. PubMed ID: 35088712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids.
    Renner H; Becker KJ; Kagermeier TE; Grabos M; Eliat F; Günther P; Schöler HR; Bruder JM
    Front Mol Neurosci; 2021; 14():715054. PubMed ID: 34335182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids.
    Costamagna G; Comi GP; Corti S
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-based Single-cell Analysis of Whole-mount-stained and Cleared Microtissues and Organoids for High Throughput Screening.
    Renner H; Otto M; Grabos M; Schöler HR; Bruder JM
    Bio Protoc; 2021 Jun; 11(12):e4050. PubMed ID: 34262994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells.
    Sarrafha L; Parfitt GM; Reyes R; Goldman C; Coccia E; Kareva T; Ahfeldt T
    STAR Protoc; 2021 Jun; 2(2):100463. PubMed ID: 33997803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development.
    Tejchman A; Znój A; Chlebanowska P; Frączek-Szczypta A; Majka M
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish.
    Scalise M; Marino F; Salerno L; Cianflone E; Molinaro C; Salerno N; De Angelis A; Viglietto G; Urbanek K; Torella D
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Automation in 3D Cell Culture: Selective and Gentle High-Throughput Handling of Spheroids and Organoids via Novel Pick-Flow-Drop Principle.
    Zieger V; Frejek D; Zimmermann S; Miotto GAA; Koltay P; Zengerle R; Kartmann S
    Adv Healthc Mater; 2024 Apr; 13(9):e2303350. PubMed ID: 38265410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening.
    Boussaad I; Cruciani G; Bolognin S; Antony P; Dording CM; Kwon YJ; Heutink P; Fava E; Schwamborn JC; Krüger R
    Sci Rep; 2021 Jan; 11(1):1439. PubMed ID: 33446877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease.
    Chlebanowska P; Tejchman A; Sułkowski M; Skrzypek K; Majka M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro.
    Ding B; Sun G; Liu S; Peng E; Wan M; Chen L; Jackson J; Atala A
    Cell Transplant; 2020; 29():963689719897066. PubMed ID: 32166969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells.
    Monzel AS; Smits LM; Hemmer K; Hachi S; Moreno EL; van Wuellen T; Jarazo J; Walter J; Brüggemann I; Boussaad I; Berger E; Fleming RMT; Bolognin S; Schwamborn JC
    Stem Cell Reports; 2017 May; 8(5):1144-1154. PubMed ID: 28416282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells.
    Sozzi E; Nilsson F; Kajtez J; Parmar M; Fiorenzano A
    Curr Protoc; 2022 Sep; 2(9):e555. PubMed ID: 36121202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 97.