These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2100 related articles for article (PubMed ID: 33138918)
1. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM Elife; 2020 Nov; 9():. PubMed ID: 33138918 [TBL] [Abstract][Full Text] [Related]
2. Combining Automated Organoid Workflows with Artificial Intelligence-Based Analyses: Opportunities to Build a New Generation of Interdisciplinary High-Throughput Screens for Parkinson's Disease and Beyond. Renner H; Schöler HR; Bruder JM Mov Disord; 2021 Dec; 36(12):2745-2762. PubMed ID: 34498298 [TBL] [Abstract][Full Text] [Related]
3. Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Maas RGC; Beekink T; Chirico N; Snijders Blok CJB; Dokter I; Sampaio-Pinto V; van Mil A; Doevendans PA; Buikema JW; Sluijter JPG; Stillitano F J Vis Exp; 2023 Mar; (193):. PubMed ID: 36971448 [TBL] [Abstract][Full Text] [Related]
4. Generation and Maintenance of Homogeneous Human Midbrain Organoids. Renner H; Grabos M; Schöler HR; Bruder JM Bio Protoc; 2021 Jun; 11(11):e4049. PubMed ID: 34291121 [TBL] [Abstract][Full Text] [Related]
5. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Czerniecki SM; Cruz NM; Harder JL; Menon R; Annis J; Otto EA; Gulieva RE; Islas LV; Kim YK; Tran LM; Martins TJ; Pippin JW; Fu H; Kretzler M; Shankland SJ; Himmelfarb J; Moon RT; Paragas N; Freedman BS Cell Stem Cell; 2018 Jun; 22(6):929-940.e4. PubMed ID: 29779890 [TBL] [Abstract][Full Text] [Related]
6. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. Du Y; Li X; Niu Q; Mo X; Qui M; Ma T; Kuo CJ; Fu H J Mol Cell Biol; 2020 Aug; 12(8):630-643. PubMed ID: 32678871 [TBL] [Abstract][Full Text] [Related]
7. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Jo J; Xiao Y; Sun AX; Cukuroglu E; Tran HD; Göke J; Tan ZY; Saw TY; Tan CP; Lokman H; Lee Y; Kim D; Ko HS; Kim SO; Park JH; Cho NJ; Hyde TM; Kleinman JE; Shin JH; Weinberger DR; Tan EK; Je HS; Ng HH Cell Stem Cell; 2016 Aug; 19(2):248-257. PubMed ID: 27476966 [TBL] [Abstract][Full Text] [Related]
8. Paraxial mesoderm organoids model development of human somites. Budjan C; Liu S; Ranga A; Gayen S; Pourquié O; Hormoz S Elife; 2022 Jan; 11():. PubMed ID: 35088712 [TBL] [Abstract][Full Text] [Related]
9. Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids. Renner H; Becker KJ; Kagermeier TE; Grabos M; Eliat F; Günther P; Schöler HR; Bruder JM Front Mol Neurosci; 2021; 14():715054. PubMed ID: 34335182 [TBL] [Abstract][Full Text] [Related]
10. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids. Costamagna G; Comi GP; Corti S Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800815 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence-based Single-cell Analysis of Whole-mount-stained and Cleared Microtissues and Organoids for High Throughput Screening. Renner H; Otto M; Grabos M; Schöler HR; Bruder JM Bio Protoc; 2021 Jun; 11(12):e4050. PubMed ID: 34262994 [TBL] [Abstract][Full Text] [Related]
12. High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells. Sarrafha L; Parfitt GM; Reyes R; Goldman C; Coccia E; Kareva T; Ahfeldt T STAR Protoc; 2021 Jun; 2(2):100463. PubMed ID: 33997803 [TBL] [Abstract][Full Text] [Related]
13. Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. Tejchman A; Znój A; Chlebanowska P; Frączek-Szczypta A; Majka M Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825046 [TBL] [Abstract][Full Text] [Related]
14. From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Scalise M; Marino F; Salerno L; Cianflone E; Molinaro C; Salerno N; De Angelis A; Viglietto G; Urbanek K; Torella D Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947977 [TBL] [Abstract][Full Text] [Related]
15. Towards Automation in 3D Cell Culture: Selective and Gentle High-Throughput Handling of Spheroids and Organoids via Novel Pick-Flow-Drop Principle. Zieger V; Frejek D; Zimmermann S; Miotto GAA; Koltay P; Zengerle R; Kartmann S Adv Healthc Mater; 2024 Apr; 13(9):e2303350. PubMed ID: 38265410 [TBL] [Abstract][Full Text] [Related]
16. Integrated, automated maintenance, expansion and differentiation of 2D and 3D patient-derived cellular models for high throughput drug screening. Boussaad I; Cruciani G; Bolognin S; Antony P; Dording CM; Kwon YJ; Heutink P; Fava E; Schwamborn JC; Krüger R Sci Rep; 2021 Jan; 11(1):1439. PubMed ID: 33446877 [TBL] [Abstract][Full Text] [Related]
17. Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease. Chlebanowska P; Tejchman A; Sułkowski M; Skrzypek K; Majka M Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973095 [TBL] [Abstract][Full Text] [Related]
18. Drug Evaluation of Parkinson's Disease Patient-Derived Midbrain Organoids Using Mesoporous Au Nanodot-Patterned 3D Concave Electrode. An J; Shin M; Beak G; Yoon J; Kim S; Cho HY; Choi JW ACS Sens; 2024 Jul; 9(7):3573-3580. PubMed ID: 38954790 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro. Ding B; Sun G; Liu S; Peng E; Wan M; Chen L; Jackson J; Atala A Cell Transplant; 2020; 29():963689719897066. PubMed ID: 32166969 [TBL] [Abstract][Full Text] [Related]