These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
626 related articles for article (PubMed ID: 33139190)
21. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams - A review. Yukesh Kannah R; Dinesh Kumar M; Kavitha S; Rajesh Banu J; Kumar Tyagi V; Rajaguru P; Kumar G Bioresour Technol; 2022 Dec; 366():128203. PubMed ID: 36330969 [TBL] [Abstract][Full Text] [Related]
22. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review. Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S Biotechnol Genet Eng Rev; 2023 Oct; 39(2):897-936. PubMed ID: 36641590 [TBL] [Abstract][Full Text] [Related]
23. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Kumar G; Ponnusamy VK; Bhosale RR; Shobana S; Yoon JJ; Bhatia SK; Rajesh Banu J; Kim SH Bioresour Technol; 2019 Sep; 287():121427. PubMed ID: 31104939 [TBL] [Abstract][Full Text] [Related]
24. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Goswami L; Kushwaha A; Napathorn SC; Kim BS Int J Biol Macromol; 2023 Aug; 247():125743. PubMed ID: 37423435 [TBL] [Abstract][Full Text] [Related]
25. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993 [TBL] [Abstract][Full Text] [Related]
26. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Li M; Wilkins MR Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680 [TBL] [Abstract][Full Text] [Related]
27. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Lhamo P; Behera SK; Mahanty B Biotechnol J; 2021 Sep; 16(9):e2100136. PubMed ID: 34132046 [TBL] [Abstract][Full Text] [Related]
28. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production. Khatami K; Perez-Zabaleta M; Cetecioglu Z J Environ Manage; 2022 Mar; 305():114337. PubMed ID: 34972045 [TBL] [Abstract][Full Text] [Related]
29. Bio-conversion of organic wastes towards polyhydroxyalkanoates. Kuang ZY; Yang H; Shen SW; Lin YN; Sun SW; Neureiter M; Yue HT; Ye JW Biotechnol Notes; 2023; 4():118-126. PubMed ID: 39416913 [TBL] [Abstract][Full Text] [Related]
30. Microbial cell factories for the production of polyhydroxyalkanoates. Nagarajan D; Aristya GR; Lin YJ; Chang JJ; Yen HW; Chang JS Essays Biochem; 2021 Jul; 65(2):337-353. PubMed ID: 34132340 [TBL] [Abstract][Full Text] [Related]
31. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544 [TBL] [Abstract][Full Text] [Related]
32. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. Diankristanti PA; Lin YC; Yi YC; Ng IS Bioresour Technol; 2024 Feb; 393():130149. PubMed ID: 38049017 [TBL] [Abstract][Full Text] [Related]
33. An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs. Tran MH; Choi TR; Yang YH; Lee OK; Lee EY Int J Biol Macromol; 2024 Feb; 257(Pt 2):128687. PubMed ID: 38101655 [TBL] [Abstract][Full Text] [Related]
34. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery. Borrero-de Acuña JM; Poblete-Castro I Microb Biotechnol; 2023 Feb; 16(2):262-285. PubMed ID: 35792877 [TBL] [Abstract][Full Text] [Related]
35. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Perez-Zabaleta M; Atasoy M; Khatami K; Eriksson E; Cetecioglu Z Bioresour Technol; 2021 Mar; 323():124604. PubMed ID: 33387708 [TBL] [Abstract][Full Text] [Related]
36. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils? Surendran A; Lakshmanan M; Chee JY; Sulaiman AM; Thuoc DV; Sudesh K Front Bioeng Biotechnol; 2020; 8():169. PubMed ID: 32258007 [TBL] [Abstract][Full Text] [Related]
37. PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution. Acharjee SA; Bharali P; Gogoi B; Sorhie V; Walling B; Alemtoshi Water Air Soil Pollut; 2023; 234(1):21. PubMed ID: 36593989 [TBL] [Abstract][Full Text] [Related]
38. Development of polyhydroxyalkanoates production from waste feedstocks and applications. Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402 [TBL] [Abstract][Full Text] [Related]
39. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. González-Rojo S; Paniagua-García AI; Díez-Antolínez R Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203509 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Thomas AP; Kasa VP; Dubey BK; Sen R; Sarmah AK Sci Total Environ; 2023 Dec; 904():167243. PubMed ID: 37741416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]