BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33139669)

  • 1. NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines.
    Cherkasov S; Parkhomenko D; Genaev A; Salnikov G; Edeleva M; Morozov D; Rybalova T; Kirilyuk I; Marque SRA; Bagryanskaya E
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33139669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trityl-based alkoxyamines as NMP controllers and spin-labels.
    Audran G; Bagryanskaya EG; Brémond P; Edeleva MV; Marque SRA; Parkhomenko DA; Rogozhnikova OY; Tormyshev VM; Tretyakov EV; Trukhin DV; Zhivetyeva SI
    Polym Chem; 2016 Nov; 7(42):6490-6499. PubMed ID: 28989533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxy- and silyloxy-substituted TEMPO derivatives for the living free-radical polymerization of styrene and n-butyl acrylate: synthesis, kinetics, and mechanistic studies.
    Knoop CA; Studer A
    J Am Chem Soc; 2003 Dec; 125(52):16327-33. PubMed ID: 14692774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-sensitive C-ON bond homolysis of alkoxyamines of imidazoline series with multiple ionizable groups as an approach for control of nitroxide mediated polymerization.
    Edeleva MV; Kirilyuk IA; Zhurko IF; Parkhomenko DA; Tsentalovich YP; Bagryanskaya EG
    J Org Chem; 2011 Jul; 76(14):5558-73. PubMed ID: 21634404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diastereomeric excess upon cleavage and reformation of diastereomeric alkoxyamines.
    Ananchenko G; Marque S; Gigmes D; Bertin D; Tordo P
    Org Biomol Chem; 2004 Mar; 2(5):709-15. PubMed ID: 14985811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Side reactions of nitroxide-mediated polymerization: N-O versus O-C cleavage of alkoxyamines.
    Hodgson JL; Roskop LB; Gordon MS; Lin CY; Coote ML
    J Phys Chem A; 2010 Sep; 114(38):10458-66. PubMed ID: 20812754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing C-ON bond homolysis in alkoxyamines: unexpected behavior of SG1 (N-(2-methyl-2-propyl)- N-(1-diethylphosphono-2,2-dimethylpropyl)-N-oxyl)-based alkoxyamines.
    Bertin D; Gigmes D; Le Mercier C; Marque SR; Tordo P
    J Org Chem; 2004 Jul; 69(15):4925-30. PubMed ID: 15255717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart Control of Nitroxide-Mediated Polymerization Initiators' Reactivity by pH, Complexation with Metals, and Chemical Transformations.
    Edeleva M; Audran G; Marque S; Bagryanskaya E
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30813542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Alkoxyamines: A New Tool for Smart Applications.
    Audran G; Marque SRA; Mellet P
    Acc Chem Res; 2020 Dec; 53(12):2828-2840. PubMed ID: 33172268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-sensitive C-ON bond homolysis of alkoxyamines of imidazoline series: a theoretical study.
    Parkhomenko DA; Edeleva MV; Kiselev VG; Bagryanskaya EG
    J Phys Chem B; 2014 May; 118(20):5542-50. PubMed ID: 24804900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical TEMPO.
    Voest EE; van Faassen E; Marx JJ
    Free Radic Biol Med; 1993 Dec; 15(6):589-95. PubMed ID: 8138184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radical sensor based on CdSe quantum dots with added 4-amino-2,2,6,6-tetramethylpiperidine oxide functionality.
    Maurel V; Laferrière M; Billone P; Godin R; Scaiano JC
    J Phys Chem B; 2006 Aug; 110(33):16353-8. PubMed ID: 16913763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of cyclic nitroxide radicals as HNO scavengers.
    Samuni Y; Samuni U; Goldstein S
    J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of nitroxide spin probes and electron paramagnetic resonance for assessing reducing power of beer. role of SH groups.
    Kocherginsky NM; Kostetski YY; Smirnov AI
    J Agric Food Chem; 2005 Feb; 53(4):1052-7. PubMed ID: 15713019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric and electronic effects in cyclic alkoxyamines--synthesis and applications as regulators for controlled/living radical polymerization.
    Wetter C; Gierlich J; Knoop CA; Müller C; Schulte T; Studer A
    Chemistry; 2004 Mar; 10(5):1156-66. PubMed ID: 15007807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitroxides scavenge myeloperoxidase-catalyzed thiyl radicals in model systems and in cells.
    Borisenko GG; Martin I; Zhao Q; Amoscato AA; Kagan VE
    J Am Chem Soc; 2004 Aug; 126(30):9221-32. PubMed ID: 15281811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To be a radical or not to be one? The fate of the stable nitroxide radical TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] undergoing plasma polymerization into thin-film coatings.
    Michl TD; Tran DTT; Böttle K; Kuckling HF; Zhalgasbaikyzy A; Ivanovská B; Cavallaro AA; Araque Toledo MA; Sherman PJ; Al-Bataineh SA; Vasilev K
    Biointerphases; 2020 Jun; 15(3):031015. PubMed ID: 32590900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the nitroxide structure on the homolysis rate constant of alkoxyamines: a Taft-Ingold analysis.
    Marque S
    J Org Chem; 2003 Oct; 68(20):7582-90. PubMed ID: 14510529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the carboxylate salt on the C--ON bond homolysis of SG1-based alkoxyamines.
    Bertin D; Gigmes D; Marque SR; Siri D; Tordo P; Trappo G
    Chemphyschem; 2008 Feb; 9(2):272-81. PubMed ID: 18200479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modifications of imidazole-containing alkoxyamines increase C-ON bond homolysis rate: Effects on their cytotoxic properties in glioblastoma cells.
    Yamasaki T; Buric D; Chacon C; Audran G; Braguer D; Marque SRA; Carré M; Brémond P
    Bioorg Med Chem; 2019 May; 27(10):1942-1951. PubMed ID: 30975504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.