These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33139760)
1. Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk. Ahmadian A; Bilal M; Khan MA; Asjad MI Sci Rep; 2020 Nov; 10(1):18776. PubMed ID: 33139760 [TBL] [Abstract][Full Text] [Related]
2. The parametric study of hybrid nanofluid flow with heat transition characteristics over a fluctuating spinning disk. Zhang XH; A Algehyne E; G Alshehri M; Bilal M; Khan MA; Muhammad T PLoS One; 2021; 16(8):e0254457. PubMed ID: 34398887 [TBL] [Abstract][Full Text] [Related]
3. Numerical approach towards gyrotactic microorganisms hybrid nanoliquid flow with the hall current and magnetic field over a spinning disk. Lv YP; Algehyne EA; Alshehri MG; Alzahrani E; Bilal M; Khan MA; Shuaib M Sci Rep; 2021 Apr; 11(1):8948. PubMed ID: 33903649 [TBL] [Abstract][Full Text] [Related]
4. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Gul T; Kashifullah ; Bilal M; Alghamdi W; Asjad MI; Abdeljawad T Sci Rep; 2021 Jan; 11(1):1180. PubMed ID: 33441841 [TBL] [Abstract][Full Text] [Related]
5. Numerical Investigation of Darcy-Forchheimer Hybrid Nanofluid Flow with Energy Transfer over a Spinning Fluctuating Disk under the Influence of Chemical Reaction and Heat Source. Khan MR; Alqahtani AM; Alhazmi SE; Elkotb MA; Sidi MO; Alrihieli HF; Tag-Eldin E; Yassen MF Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677110 [TBL] [Abstract][Full Text] [Related]
6. Parametric estimation of gyrotactic microorganism hybrid nanofluid flow between the conical gap of spinning disk-cone apparatus. Alrabaiah H; Bilal M; Khan MA; Muhammad T; Legas EY Sci Rep; 2022 Jan; 12(1):59. PubMed ID: 34996921 [TBL] [Abstract][Full Text] [Related]
7. Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc. Ali U; Khan H; Bilal M; Usman M; Shuaib M; Gul T Nanotechnology; 2023 Aug; 34(42):. PubMed ID: 37473745 [TBL] [Abstract][Full Text] [Related]
8. Entropy Generation on Nanofluid Thin Film Flow of Eyring-Powell Fluid with Thermal Radiation and MHD Effect on an Unsteady Porous Stretching Sheet. Ishaq M; Ali G; Shah Z; Islam S; Muhammad S Entropy (Basel); 2018 May; 20(6):. PubMed ID: 33265502 [TBL] [Abstract][Full Text] [Related]
9. Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach. Algehyne EA; Saeed A; Arif M; Bilal M; Kumam P; Galal AM Sci Rep; 2023 Aug; 13(1):13675. PubMed ID: 37608049 [TBL] [Abstract][Full Text] [Related]
10. Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field. Khan MS; Mei S; Shabnam ; Fernandez-Gamiz U; Noeiaghdam S; Shah SA; Khan A Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055199 [TBL] [Abstract][Full Text] [Related]
11. The non-Newtonian maxwell nanofluid flow between two parallel rotating disks under the effects of magnetic field. Ahmadian A; Bilal M; Khan MA; Asjad MI Sci Rep; 2020 Oct; 10(1):17088. PubMed ID: 33051520 [TBL] [Abstract][Full Text] [Related]
12. Combined impacts of low oscillating magnetic field and Shliomis theory on mono and hybrid nanofluid flows with nonlinear thermal radiation. Alharbi KAM; Shahmir N; Ramzan M; Kadry S; Saeed AM Nanotechnology; 2023 May; 34(32):. PubMed ID: 37160109 [TBL] [Abstract][Full Text] [Related]
13. Numerical Analysis of an Unsteady, Electroviscous, Ternary Hybrid Nanofluid Flow with Chemical Reaction and Activation Energy across Parallel Plates. Bilal M; Ahmed AE; El-Nabulsi RA; Ahammad NA; Alharbi KAM; Elkotb MA; Anukool W; S A ZA Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744488 [TBL] [Abstract][Full Text] [Related]
14. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Khan MS; Mei S; Shabnam ; Ali Shah N; Chung JD; Khan A; Shah SA Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214989 [TBL] [Abstract][Full Text] [Related]
15. Numerical Analysis of Thermal Radiative Maxwell Nanofluid Flow Over-Stretching Porous Rotating Disk. Zhou SS; Bilal M; Khan MA; Muhammad T Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34068521 [TBL] [Abstract][Full Text] [Related]
16. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation. Khan MI; Alsaedi A; Hayat T; Khan NB Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855 [TBL] [Abstract][Full Text] [Related]
17. Numerical solution of an electrically conducting spinning flow of hybrid nanofluid comprised of silver and gold nanoparticles across two parallel surfaces. Alqahtani AM; Bilal M; Ali A; Alsenani TR; Eldin SM Sci Rep; 2023 May; 13(1):7180. PubMed ID: 37137919 [TBL] [Abstract][Full Text] [Related]
18. Mixed Convection Nanofluid Flow with Heat Source and Chemical Reaction over an Inclined Irregular Surface. Haq I; Bilal M; Ahammad NA; Ghoneim ME; Ali A; Weera W ACS Omega; 2022 Aug; 7(34):30477-30485. PubMed ID: 36061645 [TBL] [Abstract][Full Text] [Related]
19. Hybrid nanofluid flow through a spinning Darcy-Forchheimer porous space with thermal radiation. Saeed A; Jawad M; Alghamdi W; Nasir S; Gul T; Kumam P Sci Rep; 2021 Aug; 11(1):16708. PubMed ID: 34408217 [TBL] [Abstract][Full Text] [Related]
20. Effect of Couple Stress and Mass Transpiration on Ternary Hybrid Nanoliquid over a Stretching/Shrinking Sheet with Heat Transfer. Sneha KN; Vanitha GP; Mahabaleshwar US; Laroze D Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]