These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 33139765)
1. Hybrid carbon thermal interface materials for thermoelectric generator devices. Chung SH; Kim JT; Kim DH Sci Rep; 2020 Nov; 10(1):18854. PubMed ID: 33139765 [TBL] [Abstract][Full Text] [Related]
2. High-Performance MoS Jiang D; Li Y; Li Z; Yang Z; Xia Z; Fu P; Zhang Y; Du F ACS Appl Mater Interfaces; 2023 Jun; 15(25):30495-30503. PubMed ID: 37312394 [TBL] [Abstract][Full Text] [Related]
3. Thermoelectric Energy Harvesting from Single-Walled Carbon Nanotube Alkali-Activated Nanocomposites Produced from Industrial Waste Materials. Davoodabadi M; Vareli I; Liebscher M; Tzounis L; Sgarzi M; Paipetis AS; Yang J; Cuniberti G; Mechtcherine V Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922586 [TBL] [Abstract][Full Text] [Related]
4. Enhancement Effect of the C Xia ZX; Tian GS; Xian-Yu WX; Huang X; Fu P; Zhang YF; Du FP ACS Appl Mater Interfaces; 2022 Dec; 14(49):54969-54980. PubMed ID: 36469489 [TBL] [Abstract][Full Text] [Related]
5. High-Performance n-Type Carbon Nanotubes Doped by Oxidation of Neighboring Sb Kim S; Mo JH; Jang KS ACS Appl Mater Interfaces; 2020 Sep; 12(39):43778-43784. PubMed ID: 32870650 [TBL] [Abstract][Full Text] [Related]
6. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. Dai W; Ren XJ; Yan Q; Wang S; Yang M; Lv L; Ying J; Chen L; Tao P; Sun L; Xue C; Yu J; Song C; Nishimura K; Jiang N; Lin CT Nanomicro Lett; 2022 Dec; 15(1):9. PubMed ID: 36484932 [TBL] [Abstract][Full Text] [Related]
7. Elevating Thermoelectric Performance by Compositing Dibromo-Substituted Thienoacene with SWCNTs. Li Y; Dong J; Wu X; Huo B; Liu P; Li B; Guo CY ACS Appl Mater Interfaces; 2024 Jul; 16(27):35190-35199. PubMed ID: 38943571 [TBL] [Abstract][Full Text] [Related]
8. The Influence of Molecular Weights on Dispersion and Thermoelectric Performance of Alkoxy Side-Chain Polythiophene/Carbon Nanotube Composite Materials. Chen X; Chen S; Wang D; Qiu Y; Chen Z; Yang H; Yang Q; Yin Z; Pan C Polymers (Basel); 2024 Aug; 16(17):. PubMed ID: 39274077 [TBL] [Abstract][Full Text] [Related]
9. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics. Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177 [TBL] [Abstract][Full Text] [Related]
10. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering. Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591 [TBL] [Abstract][Full Text] [Related]
11. Oxygen-Rich Polymer Polyethylene Glycol-Functionalized Single-Walled Carbon Nanotubes Toward Air-Stable n-Type Thermoelectric Materials. Wang S; Wu J; Yang F; Xin H; Wang L; Gao C ACS Appl Mater Interfaces; 2021 Jun; 13(22):26482-26489. PubMed ID: 34033474 [TBL] [Abstract][Full Text] [Related]
12. The Enhanced Thermoelectric and Mechanical Performance of Polythiophene/Single-Walled Carbon Nanotube Composites with Polar Ethylene Glycol Branched-Chain Modifications. Yang Q; Chen S; Wang D; Qiu Y; Chen Z; Yang H; Chen X; Yin Z; Pan C Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611201 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. Zhu S; Peng Y; Gao J; Miao L; Lai H; Liu C; Zhang J; Zhang Y; Zhou S; Koumoto K; Zhu T ACS Appl Mater Interfaces; 2022 Jan; 14(1):1045-1055. PubMed ID: 34965726 [TBL] [Abstract][Full Text] [Related]
14. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design. Kim W; Kim C; Lee W; Park J; Kim D Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498514 [TBL] [Abstract][Full Text] [Related]
15. Origami-Type Flexible Thermoelectric Generator Fabricated by Self-Folding. Sato Y; Terashima S; Iwase E Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677279 [TBL] [Abstract][Full Text] [Related]
16. N-Type Flexible Films and a Thermoelectric Generator of Single-Walled Carbon Nanotube-Grafted Tin Selenide Nanocrystal Composites. Fan J; Wang X; Liu F; Chen Z; Chen G ACS Appl Mater Interfaces; 2021 Jul; 13(26):30731-30738. PubMed ID: 34170118 [TBL] [Abstract][Full Text] [Related]
17. Advanced Glass Fiber Polymer Composite Laminate Operating as a Thermoelectric Generator: A Structural Device for Micropower Generation and Potential Large-Scale Thermal Energy Harvesting. Karalis G; Tzounis L; Tsirka K; Mytafides CK; Voudouris Itskaras A; Liebscher M; Lambrou E; Gergidis LN; Barkoula NM; Paipetis AS ACS Appl Mater Interfaces; 2021 May; 13(20):24138-24153. PubMed ID: 33988382 [TBL] [Abstract][Full Text] [Related]
20. Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies. Wen DL; Liu X; Bao JF; Li GK; Feng T; Zhang F; Liu D; Zhang XS ACS Appl Mater Interfaces; 2021 May; 13(18):21401-21410. PubMed ID: 33942604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]