These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33139795)

  • 1. Asymmetric dynamic coupling promotes alternative evolutionary pathways in an enzyme dimer.
    Ambrus V; Hoffka G; Fuxreiter M
    Sci Rep; 2020 Nov; 10(1):18866. PubMed ID: 33139795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of protein dynamics in the evolution of new enzyme function.
    Campbell E; Kaltenbach M; Correy GJ; Carr PD; Porebski BT; Livingstone EK; Afriat-Jurnou L; Buckle AM; Weik M; Hollfelder F; Tokuriki N; Jackson CJ
    Nat Chem Biol; 2016 Nov; 12(11):944-950. PubMed ID: 27618189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme.
    Kaczmarski JA; Mahawaththa MC; Feintuch A; Clifton BE; Adams LA; Goldfarb D; Otting G; Jackson CJ
    Nat Commun; 2020 Nov; 11(1):5945. PubMed ID: 33230119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold.
    Kaur G; Subramanian S
    J Struct Biol; 2014 Oct; 188(1):16-21. PubMed ID: 25220669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Dimerization-Dependent Mechanism Drives the Endoribonuclease Function of Porcine Reproductive and Respiratory Syndrome Virus nsp11.
    Shi Y; Li Y; Lei Y; Ye G; Shen Z; Sun L; Luo R; Wang D; Fu ZF; Xiao S; Peng G
    J Virol; 2016 May; 90(9):4579-4592. PubMed ID: 26912626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics and enzyme evolution.
    Petrović D; Risso VA; Kamerlin SCL; Sanchez-Ruiz JM
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 30021929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence and structural differences between enzyme and nonenzyme homologs.
    Todd AE; Orengo CA; Thornton JM
    Structure; 2002 Oct; 10(10):1435-51. PubMed ID: 12377129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shining a light on enzyme promiscuity.
    Copley SD
    Curr Opin Struct Biol; 2017 Dec; 47():167-175. PubMed ID: 29169066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of conformational dynamics and its role in enzyme evolution.
    Dušan P; Shina Caroline Lynn K
    Curr Opin Struct Biol; 2018 Oct; 52():50-57. PubMed ID: 30205262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of conformational dynamics in the evolution of novel enzyme function.
    Maria-Solano MA; Serrano-Hervás E; Romero-Rivera A; Iglesias-Fernández J; Osuna S
    Chem Commun (Camb); 2018 Jun; 54(50):6622-6634. PubMed ID: 29780987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between catalytic loop motions and enzyme global dynamics.
    Kurkcuoglu Z; Bakan A; Kocaman D; Bahar I; Doruker P
    PLoS Comput Biol; 2012; 8(9):e1002705. PubMed ID: 23028297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme promiscuity: a mechanistic and evolutionary perspective.
    Khersonsky O; Tawfik DS
    Annu Rev Biochem; 2010; 79():471-505. PubMed ID: 20235827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic promiscuity and the evolution of new enzymatic activities.
    O'Brien PJ; Herschlag D
    Chem Biol; 1999 Apr; 6(4):R91-R105. PubMed ID: 10099128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme function and its evolution.
    Mitchell JB
    Curr Opin Struct Biol; 2017 Dec; 47():151-156. PubMed ID: 29107208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational method for the design of nested proteins by loop-directed domain insertion.
    Blacklock KM; Yang L; Mulligan VK; Khare SD
    Proteins; 2018 Mar; 86(3):354-369. PubMed ID: 29250820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic and binding poly-reactivities shared by two unrelated proteins: The potential role of promiscuity in enzyme evolution.
    James LC; Tawfik DS
    Protein Sci; 2001 Dec; 10(12):2600-7. PubMed ID: 11714928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary information hidden in a single protein structure.
    Shih CH; Chang CM; Lin YS; Lo WC; Hwang JK
    Proteins; 2012 Jun; 80(6):1647-57. PubMed ID: 22454236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of enzyme active sites.
    Todd AE; Orengo CA; Thornton JM
    Trends Biochem Sci; 2002 Aug; 27(8):419-26. PubMed ID: 12151227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme evolution explained (sort of).
    Dean AM; Golding GB
    Pac Symp Biocomput; 2000; ():6-17. PubMed ID: 10902152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.