These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33139891)

  • 1. Endothermic reaction at room temperature enabled by deep-ultraviolet plasmons.
    Wang C; Yang WD; Raciti D; Bruma A; Marx R; Agrawal A; Sharma R
    Nat Mater; 2021 Mar; 20(3):346-352. PubMed ID: 33139891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam.
    Yang WD; Wang C; Fredin LA; Lin PA; Shimomoto L; Lezec HJ; Sharma R
    Nat Mater; 2019 Jun; 18(6):614-619. PubMed ID: 30988449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au.
    Mukherjee S; Libisch F; Large N; Neumann O; Brown LV; Cheng J; Lassiter JB; Carter EA; Nordlander P; Halas NJ
    Nano Lett; 2013 Jan; 13(1):240-7. PubMed ID: 23194158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal-insulator-metal nanocavities in near-ultraviolet spectrum.
    Li L; Wang L; Du C; Guan Z; Xiang Y; Wu W; Ren M; Zhang X; Tang A; Cai W; Xu J
    Nanoscale; 2020 Feb; 12(5):3112-3120. PubMed ID: 31965128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles.
    Song H; Meng X; Dao TD; Zhou W; Liu H; Shi L; Zhang H; Nagao T; Kako T; Ye J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):408-416. PubMed ID: 29226665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical field tuning of localized plasmon modes in Ag microcrystals at the nanofemto scale.
    Dai Y; Dąbrowski M; Petek H
    J Chem Phys; 2020 Feb; 152(5):054201. PubMed ID: 32035439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding nascent plasmons and metallic bonding in atomically precise gold nanoclusters.
    Du X; Liu Z; Higaki T; Zhou M; Jin R
    Chem Sci; 2022 Feb; 13(7):1925-1932. PubMed ID: 35308844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized and propagating plasmons in metal films with nanoholes.
    Schwind M; Kasemo B; Zorić I
    Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic magnesium nanoparticles decorated with palladium catalyze thermal and light-driven hydrogenation of acetylene.
    Lomonosov V; Wayman TMR; Hopper ER; Ivanov YP; Divitini G; Ringe E
    Nanoscale; 2023 Apr; 15(16):7420-7429. PubMed ID: 36988987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam.
    Chu MW; Myroshnychenko V; Chen CH; Deng JP; Mou CY; García de Abajo FJ
    Nano Lett; 2009 Jan; 9(1):399-404. PubMed ID: 19063614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.
    Zhu C; Xu Q; Ji L; Ren Y; Fang M
    Chem Asian J; 2017 Dec; 12(23):2980-2984. PubMed ID: 28885770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy.
    Song F; Wang T; Wang X; Xu C; He L; Wan J; Van Haesendonck C; Ringer SP; Han M; Liu Z; Wang G
    Small; 2010 Feb; 6(3):446-51. PubMed ID: 20077517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium.
    Poursoti Z; Sun W; Bharadwaj S; Malac M; Iyer S; Khosravi F; Cui K; Qi L; Nazemifard N; Jagannath R; Rahman R; Jacob Z
    Opt Express; 2022 Apr; 30(8):12630-12638. PubMed ID: 35472896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.