BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 33140167)

  • 1. CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms.
    Yu Z; Jiang S; Wang Y; Tian X; Zhao P; Xu J; Feng M; She Q
    Sci China Life Sci; 2021 May; 64(5):678-696. PubMed ID: 33140167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus.
    Peng W; Li H; Hallstrøm S; Peng N; Liang YX; She Q
    RNA Biol; 2013 May; 10(5):738-48. PubMed ID: 23392249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales.
    Zink IA; Wimmer E; Schleper C
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33172134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of ribonucleoprotein effector complexes of Sulfolobus islandicus CRISPR-Cas systems.
    Feng M; She Q
    Methods Enzymol; 2021; 659():327-347. PubMed ID: 34752293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-based immune systems of the Sulfolobales: complexity and diversity.
    Garrett RA; Shah SA; Vestergaard G; Deng L; Gudbergsdottir S; Kenchappa CS; Erdmann S; She Q
    Biochem Soc Trans; 2011 Jan; 39(1):51-7. PubMed ID: 21265746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Major and minor crRNA annealing sites facilitate low stringency DNA protospacer binding prior to Type I-A CRISPR-Cas interference in Sulfolobus.
    Mousaei M; Deng L; She Q; Garrett RA
    RNA Biol; 2016 Nov; 13(11):1166-1173. PubMed ID: 27618562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to study CRISPR RNA biogenesis and the key players involved.
    Behler J; Hess WR
    Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative CRISPR type III-based knockdown of essential genes in hyperthermophilic
    Zink IA; Fouqueau T; Tarrason Risa G; Werner F; Baum B; Bläsi U; Schleper C
    RNA Biol; 2021 Mar; 18(3):421-434. PubMed ID: 32957821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR adaptive immune systems of Archaea.
    Vestergaard G; Garrett RA; Shah SA
    RNA Biol; 2014; 11(2):156-67. PubMed ID: 24531374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system.
    Pan S; Li Q; Deng L; Jiang S; Jin X; Peng N; Liang Y; She Q; Li Y
    RNA Biol; 2019 Sep; 16(9):1166-1178. PubMed ID: 31096876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity.
    Garrett RA; Shah SA; Erdmann S; Liu G; Mousaei M; León-Sobrino C; Peng W; Gudbergsdottir S; Deng L; Vestergaard G; Peng X; She Q
    Life (Basel); 2015 Mar; 5(1):783-817. PubMed ID: 25764276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming CRISPR-Mediated RNA Interference for Silencing of Essential Genes in Sulfolobales.
    Wimmer E; Zink IA; Schleper C
    Methods Mol Biol; 2022; 2522():177-201. PubMed ID: 36125750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of III-B CRISPR-Cas systems in archaea.
    Zhang Y; Lin J; Feng M; She Q
    Emerg Top Life Sci; 2018 Dec; 2(4):483-491. PubMed ID: 33525825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference.
    Peng W; Feng M; Feng X; Liang YX; She Q
    Nucleic Acids Res; 2015 Jan; 43(1):406-17. PubMed ID: 25505143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus.
    Liu T; Liu Z; Ye Q; Pan S; Wang X; Li Y; Peng W; Liang Y; She Q; Peng N
    Nucleic Acids Res; 2017 Sep; 45(15):8978-8992. PubMed ID: 28911114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA.
    Li Y; Zhang Y; Lin J; Pan S; Han W; Peng N; Liang YX; She Q
    Nucleic Acids Res; 2017 Nov; 45(19):11305-11314. PubMed ID: 28977458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.
    Han W; Li Y; Deng L; Feng M; Peng W; Hallstrøm S; Zhang J; Peng N; Liang YX; White MF; She Q
    Nucleic Acids Res; 2017 Feb; 45(4):1983-1993. PubMed ID: 27986854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA.
    Fischer S; Maier LK; Stoll B; Brendel J; Fischer E; Pfeiffer F; Dyall-Smith M; Marchfelder A
    J Biol Chem; 2012 Sep; 287(40):33351-63. PubMed ID: 22767603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.
    Plagens A; Richter H; Charpentier E; Randau L
    FEMS Microbiol Rev; 2015 May; 39(3):442-63. PubMed ID: 25934119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA interference is controlled by R-loop length in a type I-F1 CRISPR-Cas system.
    Tuminauskaite D; Norkunaite D; Fiodorovaite M; Tumas S; Songailiene I; Tamulaitiene G; Sinkunas T
    BMC Biol; 2020 Jun; 18(1):65. PubMed ID: 32539804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.