These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33140612)
1. [Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network]. Yuan X; Zheng X; Ji B; Li M; Li B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):875-884. PubMed ID: 33140612 [TBL] [Abstract][Full Text] [Related]
2. A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup. Yuan X; Zhou L; Yu S; Li M; Wang X; Zheng X Artif Intell Med; 2021 Mar; 113():102035. PubMed ID: 33685591 [TBL] [Abstract][Full Text] [Related]
3. Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network. Liu B; Pan D; Song H BMC Med Imaging; 2021 Jan; 21(1):14. PubMed ID: 33509106 [TBL] [Abstract][Full Text] [Related]
4. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. Fu H; Cheng J; Xu Y; Wong DWK; Liu J; Cao X IEEE Trans Med Imaging; 2018 Jul; 37(7):1597-1605. PubMed ID: 29969410 [TBL] [Abstract][Full Text] [Related]
5. Optic disc and optic cup segmentation based on anatomy guided cascade network. Bian X; Luo X; Wang C; Liu W; Lin X Comput Methods Programs Biomed; 2020 Dec; 197():105717. PubMed ID: 32957060 [TBL] [Abstract][Full Text] [Related]
6. JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation. Jiang Y; Duan L; Cheng J; Gu Z; Xia H; Fu H; Li C; Liu J IEEE Trans Biomed Eng; 2020 Feb; 67(2):335-343. PubMed ID: 31021760 [TBL] [Abstract][Full Text] [Related]
7. RSAP-Net: joint optic disc and cup segmentation with a residual spatial attention path module and MSRCR-PT pre-processing algorithm. Jiang Y; Ma Z; Wu C; Zhang Z; Yan W BMC Bioinformatics; 2022 Dec; 23(1):523. PubMed ID: 36474136 [TBL] [Abstract][Full Text] [Related]
8. Joint disc and cup segmentation based on recurrent fully convolutional network. Gao J; Jiang Y; Zhang H; Wang F PLoS One; 2020; 15(9):e0238983. PubMed ID: 32956372 [TBL] [Abstract][Full Text] [Related]
9. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation. Wang S; Yu L; Yang X; Fu CW; Heng PA IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170 [TBL] [Abstract][Full Text] [Related]
10. Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning. Luo L; Xue D; Pan F; Feng X Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):905-914. PubMed ID: 33963969 [TBL] [Abstract][Full Text] [Related]
11. Joint optic disc and cup segmentation based on elliptical-like morphological feature and spatial geometry constraint. Zhao A; Su H; She C; Huang X; Li H; Qiu H; Jiang Z; Huang G Comput Biol Med; 2023 May; 158():106796. PubMed ID: 36989744 [TBL] [Abstract][Full Text] [Related]
12. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images. Kadambi S; Wang Z; Xing E Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127 [TBL] [Abstract][Full Text] [Related]
13. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. Wang Y; Yu X; Wu C J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860 [TBL] [Abstract][Full Text] [Related]
14. ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation. Liu B; Pan D; Shuai Z; Song H Comput Methods Programs Biomed; 2022 Jan; 213():106530. PubMed ID: 34813984 [TBL] [Abstract][Full Text] [Related]
15. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573 [TBL] [Abstract][Full Text] [Related]
16. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Mvoulana A; Kachouri R; Akil M Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937 [TBL] [Abstract][Full Text] [Related]
17. NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation. Pachade S; Porwal P; Kokare M; Giancardo L; Mériaudeau F Med Image Anal; 2021 Dec; 74():102253. PubMed ID: 34614474 [TBL] [Abstract][Full Text] [Related]
18. A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection. Song Y; Zhang W; Zhang Y Math Biosci Eng; 2024 Mar; 21(4):5092-5117. PubMed ID: 38872528 [TBL] [Abstract][Full Text] [Related]
19. C2FTFNet: Coarse-to-fine transformer network for joint optic disc and cup segmentation. Yi Y; Jiang Y; Zhou B; Zhang N; Dai J; Huang X; Zeng Q; Zhou W Comput Biol Med; 2023 Sep; 164():107215. PubMed ID: 37481947 [TBL] [Abstract][Full Text] [Related]
20. Joint optic disc and cup segmentation using feature fusion and attention. Guo X; Li J; Lin Q; Tu Z; Hu X; Che S Comput Biol Med; 2022 Nov; 150():106094. PubMed ID: 36122442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]