These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 33140723)
21. Odor-modulated orientation in walking male cockroaches Periplaneta americana, and the effects of odor plumes of different structure. Willis MA; Avondet JL J Exp Biol; 2005 Feb; 208(Pt 4):721-35. PubMed ID: 15695764 [TBL] [Abstract][Full Text] [Related]
22. A balance between aerodynamic and olfactory performance during flight in Drosophila. Li C; Dong H; Zhao K Nat Commun; 2018 Aug; 9(1):3215. PubMed ID: 30097572 [TBL] [Abstract][Full Text] [Related]
23. Tempo is the key. Celani A Elife; 2020 Nov; 9():. PubMed ID: 33140721 [TBL] [Abstract][Full Text] [Related]
24. Navigational strategies used by insects to find distant, wind-borne sources of odor. Cardé RT; Willis MA J Chem Ecol; 2008 Jul; 34(7):854-66. PubMed ID: 18581182 [TBL] [Abstract][Full Text] [Related]
25. Wind gates olfaction-driven search states in free flight. Stupski SD; van Breugel F Curr Biol; 2024 Oct; 34(19):4397-4411.e6. PubMed ID: 39067453 [TBL] [Abstract][Full Text] [Related]
26. Flies require bilateral sensory input to track odor gradients in flight. Duistermars BJ; Chow DM; Frye MA Curr Biol; 2009 Aug; 19(15):1301-7. PubMed ID: 19576769 [TBL] [Abstract][Full Text] [Related]
27. Odour plumes and odour-mediated flight in insects. Cardé RT Ciba Found Symp; 1996; 200():54-66; discussion 66-70. PubMed ID: 8894290 [TBL] [Abstract][Full Text] [Related]
28. Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour. Dekker T; Cardé RT J Exp Biol; 2011 Oct; 214(Pt 20):3480-94. PubMed ID: 21957112 [TBL] [Abstract][Full Text] [Related]
29. Additional Navigational Strategies Can Augment Odor-Gated Rheotaxis for Navigation under Conditions of Variable Flow. Vasey G; Lukeman R; Wyeth RC Integr Comp Biol; 2015 Sep; 55(3):447-60. PubMed ID: 26116202 [TBL] [Abstract][Full Text] [Related]
30. Context-dependent olfactory enhancement of optomotor flight control in Drosophila. Chow DM; Frye MA J Exp Biol; 2008 Aug; 211(Pt 15):2478-85. PubMed ID: 18626082 [TBL] [Abstract][Full Text] [Related]
31. Crossmodal visual input for odor tracking during fly flight. Duistermars BJ; Frye MA Curr Biol; 2008 Feb; 18(4):270-5. PubMed ID: 18280156 [TBL] [Abstract][Full Text] [Related]
33. Spatial memory-based behaviors for locating sources of odor plumes. Grünbaum D; Willis MA Mov Ecol; 2015; 3(1):11. PubMed ID: 25960875 [TBL] [Abstract][Full Text] [Related]
34. A magnetic tether system to investigate visual and olfactory mediated flight control in Drosophila. Duistermars BJ; Frye M J Vis Exp; 2008 Nov; (21):. PubMed ID: 19066526 [TBL] [Abstract][Full Text] [Related]
35. Visually mediated odor tracking during flight in Drosophila. Frye MA; Duistermars BJ J Vis Exp; 2009 Jan; (23):. PubMed ID: 19229181 [TBL] [Abstract][Full Text] [Related]
36. A 3D analysis of flight behavior of Anopheles gambiae sensu stricto malaria mosquitoes in response to human odor and heat. Spitzen J; Spoor CW; Grieco F; ter Braak C; Beeuwkes J; van Brugge SP; Kranenbarg S; Noldus LP; van Leeuwen JL; Takken W PLoS One; 2013; 8(5):e62995. PubMed ID: 23658792 [TBL] [Abstract][Full Text] [Related]