These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33140780)

  • 21. Templated homoepitaxial growth with atomic layer deposition of single-crystal anatase (101) and rutile (110) TiO2.
    Kraus TJ; Nepomnyashchii AB; Parkinson BA
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9946-9. PubMed ID: 24927228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic structure and photoabsorption of Ti
    Wen B; Hao Q; Yin WJ; Zhang L; Wang Z; Wang T; Zhou C; Selloni A; Yang X; Liu LM
    Phys Chem Chem Phys; 2018 Jul; 20(26):17658-17665. PubMed ID: 29931014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation of nanostructured rutile and anatase plates for improving the photosplitting of water.
    Yeredla RR; Xu H
    Nanotechnology; 2008 Feb; 19(5):055706. PubMed ID: 21817620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does a photocatalytic synergy in an anatase-rutile TiO2 composite thin-film exist?
    Kafizas A; Carmalt CJ; Parkin IP
    Chemistry; 2012 Oct; 18(41):13048-58. PubMed ID: 22945797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries.
    Wei J; Liu JX; Wu ZY; Zhan ZL; Shi J; Xu K
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5013-9. PubMed ID: 26373069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical and histopathological impacts of rutile and anatase (TiO
    Leite C; Coppola F; Monteiro R; Russo T; Polese G; Lourenço MAO; Silva MRF; Ferreira P; Soares AMVM; Freitas R; Pereira E
    Sci Total Environ; 2020 Jun; 719():134886. PubMed ID: 31837882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
    Spreafico C; VandeVondele J
    Phys Chem Chem Phys; 2014 Dec; 16(47):26144-52. PubMed ID: 25360624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.
    Zhao B; Shao G; Fan B; Zhao W; Xie Y; Zhang R
    Phys Chem Chem Phys; 2015 Apr; 17(14):8802-10. PubMed ID: 25745675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoarchitecture of TiO
    Balati A; Tek S; Nash K; Shipley H
    J Colloid Interface Sci; 2019 Apr; 541():234-248. PubMed ID: 30690267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.
    Mutuma BK; Shao GN; Kim WD; Kim HT
    J Colloid Interface Sci; 2015 Mar; 442():1-7. PubMed ID: 25514642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO
    Kalb J; Knittel V; Schmidt-Mende L
    Beilstein J Nanotechnol; 2019; 10():412-418. PubMed ID: 30800580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimized method for preparation of TiO2 nanoparticles dispersion for biological study.
    Zhang X; Yin L; Tang M; Pu Y
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5213-9. PubMed ID: 21125873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.
    Lee S; Eom W; Park H; Han TH
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25332-25338. PubMed ID: 28696654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis.
    Li W; Bai Y; Liu C; Yang Z; Feng X; Lu X; van der Laak NK; Chan KY
    Environ Sci Technol; 2009 Jul; 43(14):5423-8. PubMed ID: 19708376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic Activity of TiO₂ Nanofibers: The Surface Crystalline Phase Matters.
    Zhang H; Yu M; Qin X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.
    Wang F; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23941-8. PubMed ID: 26444102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of paramagnetic defect centers in as-grown and annealed TiO
    Misra SK; Andronenko SI; Tipikin D; Freed JH; Somani V; Prakash O
    J Magn Magn Mater; 2016 Mar; 401():495-505. PubMed ID: 27041794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced extrinsic recombination process in anatase and rutile TiO
    Kim YS; Jin HJ; Jung HR; Kim J; Nguyen BP; Kim J; Jo W
    Sci Rep; 2021 Mar; 11(1):6810. PubMed ID: 33762711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.