These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 33140871)

  • 21. Revisiting the Potential of Alternating Repetition Time Balanced Steady-State Free Precession Imaging of the Abdomen at 3 T.
    Gurney-Champion OJ; Nederveen AJ; Klaassen R; Engelbrecht MR; Bel A; van Laarhoven HW; Stoker J; Goncalves SI
    Invest Radiol; 2016 Sep; 51(9):560-8. PubMed ID: 27071023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-parametric artificial neural network fitting of phase-cycled balanced steady-state free precession data.
    Heule R; Bause J; Pusterla O; Scheffler K
    Magn Reson Med; 2020 Dec; 84(6):2981-2993. PubMed ID: 32479661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the BOLD Characteristics in Pass-Band bSSFP fMRI.
    Kim TS; Lee J; Lee JH; Glover GH; Pauly JM
    Int J Imaging Syst Technol; 2012 Mar; 22(1):23-32. PubMed ID: 23661904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of vascular space occupancy and BOLD functional MRI from first principles using real microvascular angiograms.
    Genois É; Gagnon L; Desjardins M
    Magn Reson Med; 2021 Jan; 85(1):456-468. PubMed ID: 32726489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental measurement of extravascular parenchymal BOLD effects and tissue oxygen extraction fractions using multi-echo VASO fMRI at 1.5 and 3.0 T.
    Lu H; van Zijl PC
    Magn Reson Med; 2005 Apr; 53(4):808-16. PubMed ID: 15799063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T.
    Jochimsen TH; Norris DG; Mildner T; Möller HE
    Magn Reson Med; 2004 Oct; 52(4):724-32. PubMed ID: 15389950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T.
    Zhao JM; Clingman CS; Närväinen MJ; Kauppinen RA; van Zijl PC
    Magn Reson Med; 2007 Sep; 58(3):592-7. PubMed ID: 17763354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of superparamagnetic iron oxide using inversion recovery balanced steady-state free precession.
    Pelot NA; Bowen CV
    Magn Reson Imaging; 2013 Jul; 31(6):953-60. PubMed ID: 23601361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the origin of apparent low tissue signals in balanced SSFP.
    Bieri O; Scheffler K
    Magn Reson Med; 2006 Nov; 56(5):1067-74. PubMed ID: 17036284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BOLD sensitivity and vessel size specificity along CPMG and GRASE echo trains.
    Scheffler K; Engelmann J; Heule R
    Magn Reson Med; 2021 Oct; 86(4):2076-2083. PubMed ID: 34056746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo.
    Boxerman JL; Bandettini PA; Kwong KK; Baker JR; Davis TL; Rosen BR; Weisskoff RM
    Magn Reson Med; 1995 Jul; 34(1):4-10. PubMed ID: 7674897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP).
    Benkert T; Ehses P; Blaimer M; Jakob PM; Breuer FA
    Z Med Phys; 2016 Mar; 26(1):63-74. PubMed ID: 26119862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase-cycled balanced SSFP imaging for non-contrast-enhanced functional lung imaging.
    Ilicak E; Ozdemir S; Schad LR; Weis M; Schoenberg SO; Zöllner FG; Zapp J
    Magn Reson Med; 2022 Oct; 88(4):1764-1774. PubMed ID: 35608220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flip angle optimization for balanced SSFP: Cardiac cine imaging following the application of standard extracellular contrast agent (gadobutrol).
    Kuetting DLR; Dabir D; Luetkens J; Feisst A; Homsi R; Thomas D; Schild HH; Sprinkart AM
    J Magn Reson Imaging; 2018 Jan; 47(1):255-261. PubMed ID: 28429574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absence of a significant extravascular contribution to the skeletal muscle BOLD effect at 3 T.
    Sanchez OA; Copenhaver EA; Elder CP; Damon BM
    Magn Reson Med; 2010 Aug; 64(2):527-35. PubMed ID: 20665796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the influence of the vascular architecture on Gradient Echo and Spin Echo BOLD fMRI signals across cortical depth: a simulation approach based on realistic 3D vascular networks.
    Báez-Yáñez MG; Siero JCW; Curcic V; van Osch MJP; Petridou N
    bioRxiv; 2024 May; ():. PubMed ID: 38853905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging.
    Uludağ K; Müller-Bierl B; Uğurbil K
    Neuroimage; 2009 Oct; 48(1):150-65. PubMed ID: 19481163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.
    Ragot DM; Chen JJ
    Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines.
    Dharmakumar R; Arumana JM; Tang R; Harris K; Zhang Z; Li D
    J Magn Reson Imaging; 2008 May; 27(5):1037-45. PubMed ID: 18425840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification.
    Moser E; Diemling M; Baumgartner R
    J Magn Reson Imaging; 1997; 7(6):1102-8. PubMed ID: 9400855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.