BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33140952)

  • 1. Structural Fluctuations of Aromatic Residues in an Apo-Form Reveal Cryptic Binding Sites: Implications for Fragment-Based Drug Design.
    Iida S; Nakamura HK; Mashimo T; Fukunishi Y
    J Phys Chem B; 2020 Nov; 124(45):9977-9986. PubMed ID: 33140952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.
    Kimura SR; Hu HP; Ruvinsky AM; Sherman W; Favia AD
    J Chem Inf Model; 2017 Jun; 57(6):1388-1401. PubMed ID: 28537745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the structural origins of cryptic sites on proteins.
    Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites.
    Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A
    J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PlayMolecule CrypticScout: Predicting Protein Cryptic Sites Using Mixed-Solvent Molecular Simulations.
    Martinez-Rosell G; Lovera S; Sands ZA; De Fabritiis G
    J Chem Inf Model; 2020 Apr; 60(4):2314-2324. PubMed ID: 32175736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics.
    Smith RD; Carlson HA
    J Chem Inf Model; 2021 Mar; 61(3):1287-1299. PubMed ID: 33599485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Based Analysis of Cryptic-Site Opening.
    Sun Z; Wakefield AE; Kolossvary I; Beglov D; Vajda S
    Structure; 2020 Feb; 28(2):223-235.e2. PubMed ID: 31810712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites.
    Tze-Yang Ng J; Tan YS
    J Chem Theory Comput; 2022 Mar; 18(3):1969-1981. PubMed ID: 35175753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design.
    Schmidt D; Boehm M; McClendon CL; Torella R; Gohlke H
    J Chem Theory Comput; 2019 May; 15(5):3331-3343. PubMed ID: 30998331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic-site binding mechanism of medium-sized Bcl-xL inhibiting compounds elucidated by McMD-based dynamic docking simulations.
    Bekker GJ; Fukuda I; Higo J; Fukunishi Y; Kamiya N
    Sci Rep; 2021 Mar; 11(1):5046. PubMed ID: 33658550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations.
    Kuzmanic A; Bowman GR; Juarez-Jimenez J; Michel J; Gervasio FL
    Acc Chem Res; 2020 Mar; 53(3):654-661. PubMed ID: 32134250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites.
    Bowman GR; Geissler PL
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11681-6. PubMed ID: 22753506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
    Oleinikovas V; Saladino G; Cossins BP; Gervasio FL
    J Am Chem Soc; 2016 Nov; 138(43):14257-14263. PubMed ID: 27726386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptic Pockets Repository through Pocket Dynamics Tracking and Metadynamics on Essential Dynamics Space: Applications to Mcl-1.
    Benabderrahmane M; Bureau R; Voisin-Chiret AS; Santos JSO
    J Chem Inf Model; 2021 Nov; 61(11):5581-5588. PubMed ID: 34748701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden allosteric sites and De-Novo drug design.
    Rehman AU; Lu S; Khan AA; Khurshid B; Rasheed S; Wadood A; Zhang J
    Expert Opin Drug Discov; 2022 Mar; 17(3):283-295. PubMed ID: 34933653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptic binding sites on proteins: definition, detection, and druggability.
    Vajda S; Beglov D; Wakefield AE; Egbert M; Whitty A
    Curr Opin Chem Biol; 2018 Jun; 44():1-8. PubMed ID: 29800865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are induced fit protein conformational changes caused by ligand-binding predictable? A molecular dynamics investigation.
    Gao C; Desaphy J; Vieth M
    J Comput Chem; 2017 Jun; 38(15):1229-1237. PubMed ID: 28419481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets.
    Hou X; Sun JP; Ge L; Liang X; Li K; Zhang Y; Fang H
    Eur J Med Chem; 2020 Mar; 190():112131. PubMed ID: 32078861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.