These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33140955)

  • 1. Cr(VI) Formation via Oxyhalide-Induced Oxidative Dissolution of Chromium Oxide/Hydroxide in Aqueous and Frozen Solution.
    Min DW; Kim K; Kim B; Lee G; Choi W
    Environ Sci Technol; 2020 Nov; 54(22):14413-14421. PubMed ID: 33140955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of Cr(III)-Fe(III) Mixed-Phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2018 Jul; 52(14):7663-7670. PubMed ID: 29772182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and Mechanisms of Cr(VI) Formation via the Oxidation of Cr(III) Solid Phases by Chlorine in Drinking Water.
    Chebeir M; Liu H
    Environ Sci Technol; 2016 Jan; 50(2):701-10. PubMed ID: 26647114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: A pathway for fire-induced soil pollution.
    Burton ED; Choppala G; Vithana CL; Karimian N; Hockmann K; Johnston SG
    Chemosphere; 2019 May; 222():440-444. PubMed ID: 30716546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental chemistry of chromium.
    Rai D; Eary LE; Zachara JM
    Sci Total Environ; 1989 Oct; 86(1-2):15-23. PubMed ID: 2602932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment.
    Apte AD; Tare V; Bose P
    J Hazard Mater; 2006 Feb; 128(2-3):164-74. PubMed ID: 16297546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative dissolution of chromium(III) hydroxide at pH 9, 3, and 2 with product inhibition at pH 2.
    Lee G; Hering JG
    Environ Sci Technol; 2005 Jul; 39(13):4921-8. PubMed ID: 16053093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive Transformation of Hexavalent Chromium in Ice Decreases Chromium Toxicity in Aquatic Animals.
    Kim BM; Kim B; Nam SE; Eom HJ; Lee S; Kim K; Rhee JS
    Environ Sci Technol; 2022 Mar; 56(6):3503-3513. PubMed ID: 35245034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides.
    Papassiopi N; Vaxevanidou K; Christou C; Karagianni E; Antipas GS
    J Hazard Mater; 2014 Jan; 264():490-7. PubMed ID: 24238809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced redox conversion of chromate and arsenite in ice.
    Kim K; Choi W
    Environ Sci Technol; 2011 Mar; 45(6):2202-8. PubMed ID: 21344900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Removal of Hexavalent Chromium in the Presence of H2O2 in Frozen Aqueous Solutions.
    Kim K; Kim J; Bokare AD; Choi W; Yoon HI; Kim J
    Environ Sci Technol; 2015 Sep; 49(18):10937-44. PubMed ID: 26317508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium-induced excretion of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen species in Sprague-Dawley rats.
    Bagchi D; Hassoun EA; Bagchi M; Stohs SJ
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 Feb; 110(2):177-87. PubMed ID: 7599967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cr(VI) concentration on gas and particle production during iron oxidation in aqueous solutions containing Cl
    Ahn H; Jo HY; Ryu JH; Koh YK
    Environ Technol; 2017 Feb; 38(4):467-473. PubMed ID: 27266724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar.
    Dong X; Ma LQ; Gress J; Harris W; Li Y
    J Hazard Mater; 2014 Feb; 267():62-70. PubMed ID: 24418493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox reactions between chromium(VI) and hydroquinone: Alternative pathways for polymerization of organic molecules.
    Tzou YM; Chen KY; Cheng CY; Lee WZ; Teah HY; Liu YT
    Environ Pollut; 2020 Jun; 261():114024. PubMed ID: 32045790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.
    Mao L; Gao B; Deng N; Liu L; Cui H
    Chemosphere; 2016 Feb; 145():1-9. PubMed ID: 26650573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreductive dissolution of schwertmannite loaded with Cr(VI) induced by tartaric acid.
    Shi Y; Zhong R; Zhou L; Lan Y; Guo J
    Chemosphere; 2021 Aug; 276():130127. PubMed ID: 33690038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium.
    Zatka VJ
    Am Ind Hyg Assoc J; 1985 Jun; 46(6):327-31. PubMed ID: 4014009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
    Arroyo MG; Pérez-Herranz V; Montañés MT; García-Antón J; Guiñón JL
    J Hazard Mater; 2009 Sep; 169(1-3):1127-33. PubMed ID: 19464794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.