BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33140969)

  • 1. Semi-supervised Hierarchical Drug Embedding in Hyperbolic Space.
    Yu K; Visweswaran S; Batmanghelich K
    J Chem Inf Model; 2020 Dec; 60(12):5647-5657. PubMed ID: 33140969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach.
    Hu B; Wang H; Wang L; Yuan W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Hierarchical Information in Hyperbolic Space for Self-Supervised Image Hashing.
    Wei R; Liu Y; Song J; Xie Y; Zhou K
    IEEE Trans Image Process; 2024; 33():1768-1781. PubMed ID: 38442063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperbolic hierarchical knowledge graph embeddings for biological entities.
    Li N; Yang Z; Yang Y; Wang J; Lin H
    J Biomed Inform; 2023 Nov; 147():104503. PubMed ID: 37778673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing.
    Madugula SS; John L; Nagamani S; Gaur AS; Poroikov VV; Sastry GN
    Comput Biol Med; 2021 Nov; 138():104856. PubMed ID: 34555571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active learning for semi-supervised clustering based on locally linear propagation reconstruction.
    Chang CC; Lin PY
    Neural Netw; 2015 Mar; 63():170-84. PubMed ID: 25550195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources.
    Liu Z; Guo F; Gu J; Wang Y; Li Y; Wang D; Lu L; Li D; He F
    Bioinformatics; 2015 Jun; 31(11):1788-95. PubMed ID: 25638810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means.
    Hadipour H; Liu C; Davis R; Cardona ST; Hu P
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):132. PubMed ID: 35428173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses.
    Moon C; Jin C; Dong X; Abrar S; Zheng W; Chirkova RY; Tropsha A
    J Biomed Inform; 2021 Jul; 119():103838. PubMed ID: 34119691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repositioning through integration of prior knowledge and projections of drugs and diseases.
    Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T
    Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses.
    Woloszynek S; Zhao Z; Chen J; Rosen GL
    PLoS Comput Biol; 2019 Feb; 15(2):e1006721. PubMed ID: 30807567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data.
    Iwata H; Sawada R; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Feb; 55(2):446-59. PubMed ID: 25602292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting drug-disease relationships for computational drug repositioning.
    Dudley JT; Deshpande T; Butte AJ
    Brief Bioinform; 2011 Jul; 12(4):303-11. PubMed ID: 21690101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding.
    Chen H; Cheng F; Li J
    PLoS Comput Biol; 2020 Jul; 16(7):e1008040. PubMed ID: 32667925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.