BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33141001)

  • 1. Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting.
    Kim M; Kim HS; Kim HJ; Park JE; Park SY; Kim YH; Kim SJ; Lee J; Lebel MR
    Radiology; 2021 Jan; 298(1):114-122. PubMed ID: 33141001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin-Slice Pituitary MRI with Deep Learning-Based Reconstruction for Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenoma: A Prospective Study.
    Kim M; Kim HS; Park JE; Park SY; Kim YH; Kim SJ; Lee J; Lebel MR
    AJNR Am J Neuroradiol; 2022 Feb; 43(2):280-285. PubMed ID: 34992127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based image reconstruction improves radiologic evaluation of pituitary axis and cavernous sinus invasion in pituitary adenoma.
    Park H; Nam YK; Kim HS; Park JE; Lee DH; Lee J; Kim S; Kim YH
    Eur J Radiol; 2023 Jan; 158():110647. PubMed ID: 36527773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usefulness of pituitary high-resolution 3D MRI with deep-learning-based reconstruction for perioperative evaluation of pituitary adenomas.
    Ishimoto Y; Ide S; Watanabe K; Oyu K; Kasai S; Umemura Y; Sasaki M; Nagaya H; Tatsuo S; Nozaki A; Ikushima Y; Wakayama T; Asano K; Saito A; Tomiyama M; Kakeda S
    Neuroradiology; 2024 Jun; 66(6):937-945. PubMed ID: 38374411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma.
    Lee DH; Park JE; Nam YK; Lee J; Kim S; Kim YH; Kim HS
    Sci Rep; 2021 Oct; 11(1):21302. PubMed ID: 34716372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance.
    Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N
    Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

  • 8. Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS.
    Zhang X; Wang Y; Xu X; Zhang J; Sun Y; Hu M; Wang S; Li Y; Chen Y; Zhao X
    Abdom Radiol (NY); 2024 May; 49(5):1615-1625. PubMed ID: 38652125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based reconstruction can improve canine thoracolumbar magnetic resonance image quality and reduce slice thickness.
    Kang H; Noh D; Lee SK; Choi S; Lee K
    Vet Radiol Ultrasound; 2023 Nov; 64(6):1063-1070. PubMed ID: 37667979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-operative MRI predictors of hormonal remission status post pituitary adenoma resection.
    Braileanu M; Hu R; Hoch MJ; Mullins ME; Ioachimescu AG; Oyesiku NM; Pappy A; Saindane AM
    Clin Imaging; 2019; 55():29-34. PubMed ID: 30731423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis.
    Iwamura M; Ide S; Sato K; Kakuta A; Tatsuo S; Nozaki A; Wakayama T; Ueno T; Haga R; Kakizaki M; Yokoyama Y; Yamauchi R; Tsushima F; Shibutani K; Tomiyama M; Kakeda S
    Magn Reson Med Sci; 2024 Apr; 23(2):184-192. PubMed ID: 36927877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of magnetic resonance imaging criteria for the diagnosis of cavernous sinus invasion by pituitary tumors.
    Chang N; Grayson JW; Mangussi-Gomes J; Fung S; Alvarado R; Winder M; Jonker BP; McCormack A; Harvey RJ
    J Clin Neurosci; 2021 Aug; 90():262-267. PubMed ID: 34275561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging.
    Peng A; Dai H; Duan H; Chen Y; Huang J; Zhou L; Chen L
    Eur J Radiol; 2020 Apr; 125():108892. PubMed ID: 32087466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method.
    Uetani H; Nakaura T; Kitajima M; Morita K; Haraoka K; Shinojima N; Tateishi M; Inoue T; Sasao A; Mukasa A; Azuma M; Ikeda O; Yamashita Y; Hirai T
    Eur Radiol; 2022 Jul; 32(7):4527-4536. PubMed ID: 35169896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI.
    Zeynalova A; Kocak B; Durmaz ES; Comunoglu N; Ozcan K; Ozcan G; Turk O; Tanriover N; Kocer N; Kizilkilic O; Islak C
    Neuroradiology; 2019 Jul; 61(7):767-774. PubMed ID: 31011772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of deep learning-based reconstruction on high-resolution three-dimensional T2-weighted fast asymmetric spin-echo imaging in the preoperative evaluation of cerebellopontine angle tumors.
    Hokamura M; Uetani H; Hamasaki T; Nakaura T; Morita K; Yamashita Y; Kitajima M; Sugitani A; Mukasa A; Hirai T
    Neuroradiology; 2024 Jul; 66(7):1123-1130. PubMed ID: 38480538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.
    Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR
    Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images.
    Niu J; Zhang S; Ma S; Diao J; Zhou W; Tian J; Zang Y; Jia W
    Eur Radiol; 2019 Mar; 29(3):1625-1634. PubMed ID: 30255254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.