BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33141001)

  • 21. Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study.
    Staartjes VE; Serra C; Muscas G; Maldaner N; Akeret K; van Niftrik CHB; Fierstra J; Holzmann D; Regli L
    Neurosurg Focus; 2018 Nov; 45(5):E12. PubMed ID: 30453454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic resonance imaging characteristics predict pituitary function in non-functional pituitary macro-adenoma undergoing trans-sphenoidal surgery.
    Hassani B; Hashemi-Madani N; Ataee Kachuee M; Khamseh ME
    BMC Med Imaging; 2022 Apr; 22(1):60. PubMed ID: 35365091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Deep Learning Image Reconstruction Methods on MRI Throughput.
    Yang A; Finkelstein M; Koo C; Doshi AH
    Radiol Artif Intell; 2024 May; 6(3):e230181. PubMed ID: 38506618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and Evaluation of Deep Learning-based Automated Segmentation of Pituitary Adenoma in Clinical Task.
    Wang H; Zhang W; Li S; Fan Y; Feng M; Wang R
    J Clin Endocrinol Metab; 2021 Aug; 106(9):2535-2546. PubMed ID: 34060609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging.
    Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H
    Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic resonance imaging appearance of the medial wall of the cavernous sinus for the assessment of cavernous sinus invasion by pituitary adenomas.
    Cao L; Chen H; Hong J; Ma M; Zhong Q; Wang S
    J Neuroradiol; 2013 Oct; 40(4):245-51. PubMed ID: 23886874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical Impact of Deep Learning Reconstruction in MRI.
    Kiryu S; Akai H; Yasaka K; Tajima T; Kunimatsu A; Yoshioka N; Akahane M; Abe O; Ohtomo K
    Radiographics; 2023 Jun; 43(6):e220133. PubMed ID: 37200221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Contrast-Enhanced 3-Dimensional T2-Weighted Volume Isotropic Turbo Spin Echo Acquisition Sequence in the Diagnosis of Prolactin-Secreting Pituitary Microadenomas.
    Guo R; Wu Y; Guo G; Zhou H; Liu S; Yao Z; Xiao Y
    J Comput Assist Tomogr; 2022 Jan-Feb 01; 46(1):116-123. PubMed ID: 35099143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of MRI criteria for cavernous sinus invasion in pituitary macroadenoma.
    Sol YL; Lee SK; Choi HS; Lee YH; Kim J; Kim SH
    J Neuroimaging; 2014; 24(5):498-503. PubMed ID: 23157451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pituitary adenoma consistency: Direct correlation of ultrahigh field 7T MRI with histopathological analysis.
    Yao A; Rutland JW; Verma G; Banihashemi A; Padormo F; Tsankova NM; Delman BN; Shrivastava RK; Balchandani P
    Eur J Radiol; 2020 May; 126():108931. PubMed ID: 32146344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preoperative Magnetic Resonance Imaging Localization of the Normal Pituitary Gland in Nonfunctioning Pituitary Adenoma Patients Using the Radiological Sign of "Internal Carotid Artery Notch".
    Mukada N; Tosaka M; Yamaguchi R; Tanaka Y; Takahashi A; Shimauchi-Otaki H; Osawa S; Tsushima Y; Yoshimoto Y
    World Neurosurg; 2022 Oct; 166():e177-e188. PubMed ID: 35792224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of normal perisellar anatomy in 1.5 T T2-weighted MRI and comparison with the anatomic criteria defining cavernous sinus invasion of pituitary adenomas.
    Knappe UJ; Jaursch-Hancke C; Schönmayr R; Lörcher U
    Cent Eur Neurosurg; 2009 Aug; 70(3):130-6. PubMed ID: 19701871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of MRI techniques for detecting microadenomas in Cushing's disease.
    Grober Y; Grober H; Wintermark M; Jane JA; Oldfield EH
    J Neurosurg; 2018 Apr; 128(4):1051-1057. PubMed ID: 28452619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Neuroradiology; 2022 Oct; 64(10):2077-2083. PubMed ID: 35918450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resection of pituitary macroadenomas via the pseudocapsule along the posterior tumor margin: a cohort study and technical note.
    Taylor DG; Jane JA; Oldfield EH
    J Neurosurg; 2018 Feb; 128(2):422-428. PubMed ID: 28820308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of deep learning-based reconstruction of PROPELLER Shoulder MRI with conventional reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lee J; Wang X; Fung M
    Skeletal Radiol; 2023 Aug; 52(8):1545-1555. PubMed ID: 36943429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced field-of-view DWI based on deep learning reconstruction improving diagnostic accuracy of VI-RADS for evaluating muscle invasion.
    Zhang X; Xu X; Wang Y; Zhang J; Hu M; Zhang J; Zhang L; Wang S; Li Y; Zhao X; Chen Y
    Insights Imaging; 2024 Jun; 15(1):139. PubMed ID: 38853219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The value of immediate postoperative MR imaging following endoscopic endonasal pituitary surgery.
    Stofko DL; Nickles T; Sun H; Dehdashti AR
    Acta Neurochir (Wien); 2014 Jan; 156(1):133-40; discussion 140. PubMed ID: 23982229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A possible mechanism of isolated oculomotor nerve palsy by apoplexy of pituitary adenoma without cavernous sinus invasion: a report of two cases.
    Kobayashi H; Kawabori M; Terasaka S; Murata J; Houkin K
    Acta Neurochir (Wien); 2011 Dec; 153(12):2453-6; discussion 2456. PubMed ID: 21947463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.
    Brain ME; Amukotuwa S; Bammer R
    J Med Imaging Radiat Oncol; 2024 Jun; 68(4):377-384. PubMed ID: 38577926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.