These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33141235)

  • 1. The Effect of Knee Flexion on Length Changes and Stress Distribution of Ligaments: A Displacement Controlled Finite Element Analysis.
    Xiao Y; Feng X; Song Y; Chen G; Liu F; Leung FKL; Chen B
    Orthopedics; 2021 Jan; 44(1):e61-e67. PubMed ID: 33141235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biomechanics of the human patella during passive knee flexion.
    Heegaard J; Leyvraz PF; Curnier A; Rakotomanana L; Huiskes R
    J Biomech; 1995 Nov; 28(11):1265-79. PubMed ID: 8522541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo kinematics and ligamentous function of the knee during weight-bearing flexion: an investigation on mid-range flexion of the knee.
    Rao Z; Zhou C; Kernkamp WA; Foster TE; Bedair HS; Li G
    Knee Surg Sports Traumatol Arthrosc; 2020 Mar; 28(3):797-805. PubMed ID: 30972464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of the femoral condyles in flexion and extension during a continuous lunge.
    Feng Y; Tsai TY; Li JS; Wang S; Hu H; Zhang C; Rubash HE; Li G
    J Orthop Res; 2015 Apr; 33(4):591-7. PubMed ID: 25641056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study.
    Moglo KE; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):751-9. PubMed ID: 12957562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing simulations to reproduce in vivo fluoroscopy kinematics in total knee replacement patients.
    Fitzpatrick CK; Komistek RD; Rullkoetter PJ
    J Biomech; 2014 Jul; 47(10):2398-405. PubMed ID: 24845696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: In-vivo surgical transepicondylar axis and geometric center axis analyses.
    Dimitriou D; Tsai TY; Park KK; Hosseini A; Kwon YM; Rubash HE; Li G
    J Biomech; 2016 Jun; 49(9):1891-1898. PubMed ID: 27166758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of knee joint ligaments.
    Blankevoort L; Huiskes R; de Lange A
    J Biomech Eng; 1991 Feb; 113(1):94-103. PubMed ID: 2020181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle.
    Markolf KL; Jackson SR; Foster B; McAllister DR
    J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The geometry of the knee in the sagittal plane.
    O'Connor JJ; Shercliff TL; Biden E; Goodfellow JW
    Proc Inst Mech Eng H; 1989; 203(4):223-33. PubMed ID: 2701960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Kneeling by Medical Imaging Shows the Femur Moves Back to the Posterior Rim of the Tibial Plateau, Prompting Review of the Concave-Convex Rule.
    Scarvell JM; Hribar N; Galvin CR; Pickering MR; Perriman DM; Lynch JT; Smith PN
    Phys Ther; 2019 Mar; 99(3):311-318. PubMed ID: 30690574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics of the proximal tibiofibular joint is influenced by ligament integrity, knee and ankle mobility: an exploratory cadaver study.
    Alves-da-Silva T; Guerra-Pinto F; Matias R; Pessoa P
    Knee Surg Sports Traumatol Arthrosc; 2019 Feb; 27(2):405-411. PubMed ID: 30056605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional dynamic behaviour of the human knee joint under impact loading.
    Abdel-Rahman EM; Hefzy MS
    Med Eng Phys; 1998 Jun; 20(4):276-90. PubMed ID: 9728679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints.
    Caruntu DI; Hefzy MS
    J Biomech Eng; 2004 Feb; 126(1):44-53. PubMed ID: 15171128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squatting, lunging and kneeling provided similar kinematic profiles in healthy knees-A systematic review and meta-analysis of the literature on deep knee flexion kinematics.
    Galvin CR; Perriman DM; Newman PM; Lynch JT; Smith PN; Scarvell JM
    Knee; 2018 Aug; 25(4):514-530. PubMed ID: 29802075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Codominance of the individual posterior cruciate ligament bundles. An analysis of bundle lengths and orientation.
    Ahmad CS; Cohen ZA; Levine WN; Gardner TR; Ateshian GA; Mow VC
    Am J Sports Med; 2003; 31(2):221-5. PubMed ID: 12642256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratum to "The change in length of the medial and lateral collateral ligaments during in vivo knee flexion".
    Park SE; DeFrate LE; Suggs JF; Gill TJ; Rubash HE; Li G
    Knee; 2006 Jan; 13(1):77-82. PubMed ID: 16463439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.