These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 33141322)
1. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
2. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
3. Chiral recognition of tyrosine enantiomers on a novel bis-aminosaccharides composite modified glassy carbon electrode. Zou J; Yu JG Anal Chim Acta; 2019 Dec; 1088():35-44. PubMed ID: 31623714 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
5. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
6. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Dong S; Bi Q; Qiao C; Sun Y; Zhang X; Lu X; Zhao L Talanta; 2017 Oct; 173():94-100. PubMed ID: 28602197 [TBL] [Abstract][Full Text] [Related]
8. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
9. Chirality detection of amino acid enantiomers by organic electrochemical transistor. Zhang L; Wang G; Xiong C; Zheng L; He J; Ding Y; Lu H; Zhang G; Cho K; Qiu L Biosens Bioelectron; 2018 May; 105():121-128. PubMed ID: 29412935 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Hou Y; Liang J; Kuang X; Kuang R Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750 [TBL] [Abstract][Full Text] [Related]
12. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
13. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots. Jiang W; He R; Lv H; He X; Wang L; Wei Y ACS Sens; 2023 Nov; 8(11):4264-4271. PubMed ID: 37997656 [TBL] [Abstract][Full Text] [Related]
14. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). Tao Y; Dai J; Kong Y; Sha Y Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527 [TBL] [Abstract][Full Text] [Related]
15. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Niu Q; Jin P; Huang Y; Fan L; Zhang C; Yang C; Dong C; Liang W; Shuang S Analyst; 2022 Feb; 147(5):880-888. PubMed ID: 35137747 [TBL] [Abstract][Full Text] [Related]
16. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Zaidi SA Biosens Bioelectron; 2017 Aug; 94():714-718. PubMed ID: 28395254 [TBL] [Abstract][Full Text] [Related]
17. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
18. A novel electrochemical chiral interface based on the synergistic effect of polysaccharides for the recognition of tyrosine enantiomers. Zou J; Chen XQ; Zhao GQ; Jiang XY; Jiao FP; Yu JG Talanta; 2019 Apr; 195():628-637. PubMed ID: 30625594 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Niu X; Yang X; Mo Z; Liu N; Guo R; Pan Z; Liu Z Mikrochim Acta; 2019 Jul; 186(8):557. PubMed ID: 31327066 [TBL] [Abstract][Full Text] [Related]
20. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Niu X; Yang X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Bioelectrochemistry; 2019 Oct; 129():189-198. PubMed ID: 31195330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]