These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33141581)

  • 21. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials.
    Qian HJ; van Duin AC; Morokuma K; Irle S
    J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transforming the Accuracy and Numerical Stability of ReaxFF Reactive Force Fields.
    Furman D; Wales DJ
    J Phys Chem Lett; 2019 Nov; 10(22):7215-7223. PubMed ID: 31682448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
    Shen L; Wu J; Yang W
    J Chem Theory Comput; 2016 Oct; 12(10):4934-4946. PubMed ID: 27552235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor-Liquid Equilibrium of CO
    Heijmans K; Tranca IC; Smeulders DMJ; Vlugt TJH; Gaastra-Nedea SV
    J Chem Theory Comput; 2021 Jan; 17(1):322-329. PubMed ID: 33350819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field.
    Kamat AM; van Duin AC; Yakovlev A
    J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity.
    Zhou T; Liu L; Goddard WA; Zybin SV; Huang F
    Phys Chem Chem Phys; 2014 Nov; 16(43):23779-91. PubMed ID: 25272955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride.
    Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ
    J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
    Müller J; Hartke B
    J Chem Theory Comput; 2016 Aug; 12(8):3913-25. PubMed ID: 27415976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.
    Trnka T; Tvaroška I; Koča J
    J Chem Theory Comput; 2018 Jan; 14(1):291-302. PubMed ID: 29156140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of ReaxFF Reactive Force Field for Aqueous Iron-Sulfur Clusters with Applications to Stability and Reactivity in Water.
    Moerman E; Furman D; Wales DJ
    J Chem Inf Model; 2021 Mar; 61(3):1204-1214. PubMed ID: 33617718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Dynamics Simulation of Silicon Dioxide Etching by Hydrogen Fluoride Using the Reactive Force Field.
    Kim DH; Kwak SJ; Jeong JH; Yoo S; Nam SK; Kim Y; Lee WB
    ACS Omega; 2021 Jun; 6(24):16009-16015. PubMed ID: 34179646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning-Assisted Hybrid ReaxFF Simulations.
    Yilmaz DE; Woodward WH; van Duin ACT
    J Chem Theory Comput; 2021 Nov; 17(11):6705-6712. PubMed ID: 34644081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a transferable reactive force field for cobalt.
    Labrosse MR; Johnson JK; van Duin AC
    J Phys Chem A; 2010 May; 114(18):5855-61. PubMed ID: 20394398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated ReaxFF Simulations for Describing the Reactive Cross-Linking of Polymers.
    Vashisth A; Ashraf C; Zhang W; Bakis CE; van Duin ACT
    J Phys Chem A; 2018 Aug; 122(32):6633-6642. PubMed ID: 29996044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Reactive Force Field with Coarse-Grained Electrons for Liquid Water.
    Leven I; Hao H; Das AK; Head-Gordon T
    J Phys Chem Lett; 2020 Nov; 11(21):9240-9247. PubMed ID: 33073998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the ReaxFF Methodology for Electrolyte-Water Systems.
    Fedkin MV; Shin YK; Dasgupta N; Yeon J; Zhang W; van Duin D; van Duin ACT; Mori K; Fujiwara A; Machida M; Nakamura H; Okumura M
    J Phys Chem A; 2019 Mar; 123(10):2125-2141. PubMed ID: 30775922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Description of a Coordinate Bond in the ReaxFF Reactive Force Field.
    Pai SJ; Lee HW; Han SS
    J Phys Chem Lett; 2019 Nov; 10(22):7293-7299. PubMed ID: 31709800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.