These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33141705)

  • 1. Light-stimulated actuators based on nickel hydroxide-oxyhydroxide.
    Kwan KW; Li SJ; Hau NY; Li WD; Feng SP; Ngan AHW
    Sci Robot; 2018 May; 3(18):. PubMed ID: 33141705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible-Light-Driven, Nickel-Doped Cobalt Oxides/Hydroxides Actuators with High Stability.
    Kwan KW; Ngan AHW
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30557-30564. PubMed ID: 32538611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles.
    Bhatti MRA; Bilotti E; Zhang H; Varghese S; Verpaalen RCP; Schenning APHJ; Bastiaansen CWM; Peijs T
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33210-33218. PubMed ID: 32580542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti
    Hu Y; Yang L; Yan Q; Ji Q; Chang L; Zhang C; Yan J; Wang R; Zhang L; Wu G; Sun J; Zi B; Chen W; Wu Y
    ACS Nano; 2021 Mar; 15(3):5294-5306. PubMed ID: 33650851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kirigami-Based Light-Induced Shape-Morphing and Locomotion.
    Cheng YC; Lu HC; Lee X; Zeng H; Priimagi A
    Adv Mater; 2020 Feb; 32(7):e1906233. PubMed ID: 31834665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actuating compact wearable augmented reality devices by multifunctional artificial muscle.
    Kim D; Kim B; Shin B; Shin D; Lee CK; Chung JS; Seo J; Kim YT; Sung G; Seo W; Kim S; Hong S; Hwang S; Han S; Kang D; Lee HS; Koh JS
    Nat Commun; 2022 Jul; 13(1):4155. PubMed ID: 35851053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recyclable and Self-Repairable Fluid-Driven Liquid Crystal Elastomer Actuator.
    He Q; Wang Z; Wang Y; Song Z; Cai S
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35464-35474. PubMed ID: 32658448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remotely Light-Powered Soft Fluidic Actuators Based on Plasmonic-Driven Phase Transitions in Elastic Constraint.
    Meder F; Naselli GA; Sadeghi A; Mazzolai B
    Adv Mater; 2019 Dec; 31(51):e1905671. PubMed ID: 31682053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Actuating Hydrogels with WS
    Zong L; Li X; Han X; Lv L; Li M; You J; Wu X; Li C
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32280-32289. PubMed ID: 28828853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible electrochemical actuation of metallic nanohoneycombs induced by pseudocapacitive redox processes.
    Cheng C; Ngan AH
    ACS Nano; 2015 Apr; 9(4):3984-95. PubMed ID: 25758028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-driven peristaltic pumping by an actuating splay-bend strip.
    Dradrach K; Zmyślony M; Deng Z; Priimagi A; Biggins J; Wasylczyk P
    Nat Commun; 2023 Apr; 14(1):1877. PubMed ID: 37015926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.
    Tian H; Wang Z; Chen Y; Shao J; Gao T; Cai S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8307-8316. PubMed ID: 29446620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Triggered Soft Artificial Muscles: Molecular-Level Amplification of Actuation Control Signals.
    Dicker MPM; Baker AB; Iredale RJ; Naficy S; Bond IP; Faul CFJ; Rossiter JM; Spinks GM; Weaver PM
    Sci Rep; 2017 Aug; 7(1):9197. PubMed ID: 28835614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Photomechanics in Diarylethene-Driven Liquid Crystal Network Actuators.
    Lahikainen M; Kuntze K; Zeng H; Helantera S; Hecht S; Priimagi A
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47939-47947. PubMed ID: 32975926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the microwave actuation of a liquid crystalline elastomer.
    Wang X; Wang Y; Wang X; Niu H; Ridi B; Shu J; Fang X; Li C; Wang B; Gao Y; Sun L; Cao M
    Soft Matter; 2020 Aug; 16(31):7332-7341. PubMed ID: 32685953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured carbon materials based electrothermal air pump actuators.
    Liu Q; Liu L; Kuang J; Dai Z; Han J; Zhang Z
    Nanoscale; 2014 Jun; 6(12):6932-8. PubMed ID: 24839084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actuators for Implantable Devices: A Broad View.
    Yan B
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photomechanical and Chemomechanical Actuation Behavior of Graphene-Poly(dimethylsiloxane)/Gold Bilayer Tube for Multimode Soft Grippers and Volatile Organic Compounds Detection Applications.
    Leeladhar ; Singh JP
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33956-33965. PubMed ID: 30252432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Multiresponsive Paper Actuators.
    Amjadi M; Sitti M
    ACS Nano; 2016 Nov; 10(11):10202-10210. PubMed ID: 27744680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.