These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33141729)

  • 1. BMI control of a third arm for multitasking.
    Penaloza CI; Nishio S
    Sci Robot; 2018 Jul; 3(20):. PubMed ID: 33141729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistive Robotic Manipulation through Shared Autonomy and a Body-Machine Interface.
    Jain S; Farshchiansadegh A; Broad A; Abdollahi F; Mussa-Ivaldi F; Argall B
    IEEE Int Conf Rehabil Robot; 2015 Aug; 2015():526-531. PubMed ID: 26855690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a wearable interface for lightweight robotic arm for people with mobility impairments.
    Baldi TL; Spagnoletti G; Dragusanu M; Prattichizzo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1567-1573. PubMed ID: 28814043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of brain-machine interfaces from the perspective of people with paralysis.
    Blabe CH; Gilja V; Chestek CA; Shenoy KV; Anderson KD; Henderson JM
    J Neural Eng; 2015 Aug; 12(4):043002. PubMed ID: 26169880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.
    Brauchle D; Vukelić M; Bauer R; Gharabaghi A
    Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 8. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tongue interface with keyboard for control of an assistive robotic arm.
    Struijk LNSA; Lontis R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():925-928. PubMed ID: 28813939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What Turns Assistive into Restorative Brain-Machine Interfaces?
    Gharabaghi A
    Front Neurosci; 2016; 10():456. PubMed ID: 27790085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm.
    Costa Á; Hortal E; Iáñez E; Azorín JM
    PLoS One; 2014; 9(11):e112352. PubMed ID: 25390372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching brain-machine interface performance to space applications.
    Citi L; Tonet O; Marinelli M
    Int Rev Neurobiol; 2009; 86():199-212. PubMed ID: 19608001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Energy Absorption Capability of Arm Using Force Myography for Stable Human-Machine Interaction.
    Ramos A; Hashtrudi-Zaad K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4758-4761. PubMed ID: 33019054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System.
    Huang Q; Zhang Z; Yu T; He S; Li Y
    Front Neurosci; 2019; 13():1243. PubMed ID: 31824245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a graphic interface to control a robotic grasping arm: a multicenter study.
    Laffont I; Biard N; Chalubert G; Delahoche L; Marhic B; Boyer FC; Leroux C
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1740-8. PubMed ID: 19801065
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.