These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 33141893)
1. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus. Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893 [TBL] [Abstract][Full Text] [Related]
2. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography. Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317 [TBL] [Abstract][Full Text] [Related]
3. Modelling the elastic properties of the anterior eye and their contribution to maintenance of image quality: the role of the limbus. Asejczyk-Widlicka M; Sródka DW; Kasprzak H; Pierscionek BK Eye (Lond); 2007 Aug; 21(8):1087-94. PubMed ID: 16823462 [TBL] [Abstract][Full Text] [Related]
4. Study on establishment and mechanics application of finite element model of bovine eye. Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes. Nguyen BA; Reilly MA; Roberts CJ Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460 [TBL] [Abstract][Full Text] [Related]
6. Revealing regional variations in scleral shear modulus in a rabbit eye model using multi-directional ultrasound optical coherence elastography. Villegas L; Zvietcovich F; Marcos S; Birkenfeld JS Sci Rep; 2024 Sep; 14(1):21010. PubMed ID: 39251655 [TBL] [Abstract][Full Text] [Related]
7. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Pierscionek BK; Asejczyk-Widlicka M; Schachar RA Br J Ophthalmol; 2007 Jun; 91(6):801-3. PubMed ID: 17151057 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Human Corneal Shear-wave Optical Coherence Elastography. Lan G; Aglyamov SR; Larin KV; Twa MD Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Girard MJ; Suh JK; Bottlang M; Burgoyne CF; Downs JC Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5656-69. PubMed ID: 21519033 [TBL] [Abstract][Full Text] [Related]
10. Influence of the eye globe design on biomechanical analysis. Issarti I; Koppen C; Rozema JJ Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005 [TBL] [Abstract][Full Text] [Related]
11. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. Sun MG; Son T; Crutison J; Guaiquil V; Lin S; Nammari L; Klatt D; Yao X; Rosenblatt MI; Royston TJ J Mech Behav Biomed Mater; 2022 Apr; 128():105100. PubMed ID: 35121423 [TBL] [Abstract][Full Text] [Related]
12. Measurement of the Elastic Modulus of Cornea, Sclera and Limbus: The Importance of the Corneal-Limbus-Scleral Biomechanical Unit. Silver FH; Deshmukh T; Benedetto D; Gonzalez-Mercedes M; Mesica A Front Biosci (Schol Ed); 2022 Nov; 14(4):30. PubMed ID: 36575840 [TBL] [Abstract][Full Text] [Related]
13. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye. Clayson K; Pan X; Pavlatos E; Short R; Morris H; Hart RT; Liu J Exp Eye Res; 2017 Dec; 165():29-34. PubMed ID: 28864177 [TBL] [Abstract][Full Text] [Related]
14. The elasticity and rigidity of the outer coats of the eye. Asejczyk-Widlicka M; Pierscionek BK Br J Ophthalmol; 2008 Oct; 92(10):1415-8. PubMed ID: 18815423 [TBL] [Abstract][Full Text] [Related]
15. Anterior chamber angle opening during corneoscleral indentation: the mechanism of whole eye globe deformation and the importance of the limbus. Amini R; Barocas VH Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5288-94. PubMed ID: 19553625 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Subjective and Objective Methods of Corneoscleral Limbus Identification from Anterior Segment Optical Coherence Tomography Images. Skrok MK; Alonso-Caneiro D; Przeździecka-Dołyk J; Siedlecki D Optom Vis Sci; 2021 Feb; 98(2):127-136. PubMed ID: 33534377 [TBL] [Abstract][Full Text] [Related]
17. Optical coherence elastography measures the biomechanical properties of the Nair A; Zvietcovich F; Singh M; Weikert MP; Aglyamov SR; Larin KV J Biomed Opt; 2024 Jan; 29(1):016002. PubMed ID: 38223300 [TBL] [Abstract][Full Text] [Related]
18. In Vivo Noninvasive Measurement of Young's Modulus of Elasticity in Human Eyes: A Feasibility Study. Sit AJ; Lin SC; Kazemi A; McLaren JW; Pruet CM; Zhang X J Glaucoma; 2017 Nov; 26(11):967-973. PubMed ID: 28858155 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures. Zhou B; Sit AJ; Zhang X Ultrasonics; 2017 Nov; 81():86-92. PubMed ID: 28618301 [TBL] [Abstract][Full Text] [Related]