BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33141938)

  • 1. Understanding the Deactivation Pathways of Iridium(III) Pyridine-Carboxiamide Catalysts for Formic Acid Dehydrogenation.
    Menendez Rodriguez G; Zaccaria F; Tensi L; Zuccaccia C; Belanzoni P; Macchioni A
    Chemistry; 2021 Jan; 27(6):2050-2064. PubMed ID: 33141938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of (PCP)Ir-catalyzed acceptorless dehydrogenation of alkanes: a combined computational and experimental study.
    Krogh-Jespersen K; Czerw M; Summa N; Renkema KB; Achord PD; Goldman AS
    J Am Chem Soc; 2002 Sep; 124(38):11404-16. PubMed ID: 12236755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Effect of Sterically Protected Glucosyl Substituents in Formic Acid Dehydrogenation by Iridium(III) 2-Pyridineamidate Catalysts.
    Trotta C; Langellotti V; Manco I; Rodriguez GM; Rocchigiani L; Zuccaccia C; Ruffo F; Macchioni A
    ChemSusChem; 2024 May; ():e202400612. PubMed ID: 38747321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridium and Ruthenium Complexes of
    Siek S; Burks DB; Gerlach DL; Liang G; Tesh JM; Thompson CR; Qu F; Shankwitz JE; Vasquez RM; Chambers N; Szulczewski GJ; Grotjahn DB; Webster CE; Papish ET
    Organometallics; 2017 Mar; 36(6):1091-1106. PubMed ID: 29540958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehydropolymerization of H
    Brodie CN; Sotorrios L; Boyd TM; Macgregor SA; Weller AS
    ACS Catal; 2022 Oct; 12(20):13050-13064. PubMed ID: 36313521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors.
    Guzmán J; Urriolabeitia A; Polo V; Fernández-Buenestado M; Iglesias M; Fernández-Alvarez FJ
    Dalton Trans; 2022 Mar; 51(11):4386-4393. PubMed ID: 35194624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps.
    Liu H; Wang WH; Xiong H; Nijamudheen A; Ertem MZ; Wang M; Duan L
    Inorg Chem; 2021 Mar; 60(5):3410-3417. PubMed ID: 33560831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-atom transfer in open-shell organometallic chemistry: the reactivity of Rh(II)(cod) and Ir(II)(cod) radicals.
    Hetterscheid DG; Klop M; Kicken RJ; Smits JM; Reijerse EJ; de Bruin B
    Chemistry; 2007; 13(12):3386-405. PubMed ID: 17219454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand Effect on the Stability of Water-Soluble Iridium Catalysts for High-Pressure Hydrogen Gas Production by Dehydrogenation of Formic Acid.
    Iguchi M; Onishi N; Himeda Y; Kawanami H
    Chemphyschem; 2019 May; 20(10):1296-1300. PubMed ID: 30884093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative stabilities of M/NHC complexes (M = Ni, Pd, Pt) against R-NHC, X-NHC and X-X couplings in M(0)/M(ii) and M(ii)/M(iv) catalytic cycles: a theoretical study.
    Astakhov AV; Soliev SB; Gordeev EG; Chernyshev VM; Ananikov VP
    Dalton Trans; 2019 Dec; 48(45):17052-17062. PubMed ID: 31696883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of the mechanism for the homogeneous catalytic reversible dehydrogenation-hydrogenation of nitrogen heterocycles.
    Zhang XB; Xi Z
    Phys Chem Chem Phys; 2011 Mar; 13(9):3997-4004. PubMed ID: 21225033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir
    Wang WH; Wang H; Yang Y; Lai X; Li Y; Wang J; Himeda Y; Bao M
    ChemSusChem; 2020 Sep; 13(18):5015-5022. PubMed ID: 32662920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and dynamic processes in 16VE iridium(III) ethyl hydride and rhodium(I) σ-ethane complexes: experimental and computational studies.
    Walter MD; White PS; Schauer CK; Brookhart M
    J Am Chem Soc; 2013 Oct; 135(42):15933-47. PubMed ID: 24053635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridium-(κ
    Gomez-España A; Lopez-Morales JL; Español-Sanchez B; García-Orduña P; Lahoz FJ; Iglesias M; Fernández-Alvarez FJ
    Dalton Trans; 2023 May; 52(20):6722-6729. PubMed ID: 37129044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT Probe into the Mechanism of Formic Acid Dehydrogenation Catalyzed by Cp*Co, Cp*Rh, and Cp*Ir Catalysts with 4,4'-Amino-/Alkylamino-Functionalized 2,2'-Bipyridine Ligands.
    Johnee Britto N; Jaccob M
    J Phys Chem A; 2021 Nov; 125(43):9478-9488. PubMed ID: 34702035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.