BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33142206)

  • 1. Non-extension movements inducing over half the mechanical energy directly contributing to jumping height in human running single-leg jump.
    Sado N; Yoshioka S; Fukashiro S
    J Biomech; 2020 Dec; 113():110082. PubMed ID: 33142206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pelvic elevation induces vertical kinetic energy without losing horizontal energy during running single-leg jump for distance.
    Sado N; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2023 Jul; 23(7):1146-1154. PubMed ID: 35465845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curved Approach in High Jump Induces Greater Jumping Height without Greater Joint Kinetic Exertions than Straight Approach.
    Sado N; Yoshioka S; Fukashiro S
    Med Sci Sports Exerc; 2022 Jan; 54(1):120-128. PubMed ID: 34347669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrepancy between 'contributing to' and 'sharing variance with' the effective energy for height in high jump.
    Sado N; Fujimori T; Tobe N
    J Sports Sci; 2024 Mar; 42(5):425-433. PubMed ID: 38545865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-leg side elevation of pelvis in single-leg jump is a substantial advantage over double-leg jump for jumping height generation.
    Sado N; Yoshioka S; Fukashiro S
    J Biomech; 2020 May; 104():109751. PubMed ID: 32216963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquisition of mechanical energy directly contributing to sideward propulsion in sidestep cutting manoeuvre.
    Sado N; Yoshioka S; Fukashiro S
    J Biomech; 2021 Nov; 128():110799. PubMed ID: 34656010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical power flow from trunk and lower limb joint power to external horizontal power in the track and field block start.
    Sado N; Yoshioka S; Fukashiro S
    Eur J Sport Sci; 2023 Sep; 23(9):1903-1912. PubMed ID: 35913105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip Abductors and Lumbar Lateral Flexors act as Energy Generators in Running Single-leg Jumps.
    Sado N; Yoshioka S; Fukashiro S
    Int J Sports Med; 2018 Dec; 39(13):1001-1008. PubMed ID: 30326529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinetic function of the lumbo-pelvic-hip complex during block start.
    Sado N; Yoshioka S; Fukashiro S
    PLoS One; 2020; 15(3):e0230145. PubMed ID: 32163481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic control of extreme jump angles in the red-legged running frog,
    Richards CT; Porro LB; Collings AJ
    J Exp Biol; 2017 May; 220(Pt 10):1894-1904. PubMed ID: 28275005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads.
    Voigt M; Simonsen EB; Dyhre-Poulsen P; Klausen K
    J Biomech; 1995 Mar; 28(3):293-307. PubMed ID: 7730388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles.
    Jacobs R; Bobbert MF; van Ingen Schenau GJ
    J Biomech; 1996 Apr; 29(4):513-23. PubMed ID: 8964781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interjoint coordination in lower limbs in patients with a rupture of the anterior cruciate ligament of the knee joint.
    St-Onge N; Duval N; Yahia L; Feldman AG
    Knee Surg Sports Traumatol Arthrosc; 2004 May; 12(3):203-16. PubMed ID: 14689167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running.
    Prilutsky BI; Zatsiorsky VM
    J Biomech; 1994 Jan; 27(1):25-34. PubMed ID: 8106533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximal-to-distal sequencing in vertical jumping with and without arm swing.
    Chiu LZ; Bryanton MA; Moolyk AN
    J Strength Cond Res; 2014 May; 28(5):1195-202. PubMed ID: 24476777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg stiffness and joint stiffness while running to and jumping over an obstacle.
    Mauroy G; Schepens B; Willems PA
    J Biomech; 2014 Jan; 47(2):526-35. PubMed ID: 24275441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral limb deficit seven months after ACL-reconstruction: an analysis of single-leg hop tests.
    Pairot de Fontenay B; Argaud S; Blache Y; Monteil K
    Knee; 2015 Sep; 22(4):309-12. PubMed ID: 25981951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.