BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33142548)

  • 1. Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils.
    Liu T; Zhang Y; Lu X; Wang P; Zhang X; Tian J; Wang Q; Song J; Jin Y; Xiao H
    Carbohydr Polym; 2021 Jan; 251():116725. PubMed ID: 33142548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors.
    Jain K; Reid MS; Larsson PA; Wågberg L
    Carbohydr Polym; 2021 May; 260():117818. PubMed ID: 33712162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.
    Benselfelt T; Cranston ED; Ondaral S; Johansson E; Brumer H; Rutland MW; Wågberg L
    Biomacromolecules; 2016 Sep; 17(9):2801-11. PubMed ID: 27476615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
    Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M
    Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites.
    Lucenius J; Valle-Delgado JJ; Parikka K; Österberg M
    J Colloid Interface Sci; 2019 Nov; 555():104-114. PubMed ID: 31377636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of cellulose nanofibrils with luminescent carbon dots.
    Junka K; Guo J; Filpponen I; Laine J; Rojas OJ
    Biomacromolecules; 2014 Mar; 15(3):876-81. PubMed ID: 24456129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive cellulose nanofibrils for specific human IgG binding.
    Zhang Y; Carbonell RG; Rojas OJ
    Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.
    Niinivaara E; Faustini M; Tammelin T; Kontturi E
    Langmuir; 2015 Nov; 31(44):12170-6. PubMed ID: 26461931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submicron hierarchy of cellulose nanofibril films with etherified hemicelluloses.
    Nypelö T; Laine C; Colson J; Henniges U; Tammelin T
    Carbohydr Polym; 2017 Dec; 177():126-134. PubMed ID: 28962750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals.
    Villares A; Moreau C; Dammak A; Capron I; Cathala B
    Soft Matter; 2015 Aug; 11(32):6472-81. PubMed ID: 26179417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection.
    Pirich CL; de Freitas RA; Torresi RM; Picheth GF; Sierakowski MR
    Biosens Bioelectron; 2017 Jun; 92():47-53. PubMed ID: 28187298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins.
    Sánchez-Osorno DM; Gomez-Maldonado D; Castro C; Peresin MS
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol.
    Castro DO; Tabary N; Martel B; Gandini A; Belgacem N; Bras J
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1018-25. PubMed ID: 27612798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adsorption of phosphate-buffered saline to model films composed of nanofibrillated cellulose and gelatin.
    Ondaral S; Çelik E; Kurtuluş OÇ
    J Appl Biomater Funct Mater; 2019; 17(1):2280800019826513. PubMed ID: 30803293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized films from cellulose I Nanofibrils using the layer-by-layer technique.
    Aulin C; Johansson E; Wågberg L; Lindström T
    Biomacromolecules; 2010 Apr; 11(4):872-82. PubMed ID: 20196583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of Cellulose Nanocrystals onto Supported Lipid Membranes.
    Navon Y; Jean B; Coche-Guérente L; Dahlem F; Bernheim-Groswasser A; Heux L
    Langmuir; 2020 Feb; 36(6):1474-1483. PubMed ID: 31904979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Study of Ion-Driven Aggregation of Cellulose Nanocrystals.
    Lombardo S; Gençer A; Schütz C; Van Rie J; Eyley S; Thielemans W
    Biomacromolecules; 2019 Aug; 20(8):3181-3190. PubMed ID: 31339703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction pathway and free energy profile determined for specific recognition of oligosaccharide moiety of carboxypeptidase Y.
    Senkara-Barwijuk E; Kobiela T; Lebed K; Lekka M
    Biosens Bioelectron; 2012; 36(1):103-9. PubMed ID: 22541811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.