These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33142556)

  • 1. Self-healing, stretchable, and freezing-resistant hydroxypropyl starch-based double-network hydrogels.
    Lin Q; Li H; Ji N; Dai L; Xiong L; Sun Q
    Carbohydr Polym; 2021 Jan; 251():116982. PubMed ID: 33142556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-network hydrogels with superior self-healing properties using starch reinforcing strategy.
    Shang X; Wang Q; Li J; Zhang G; Zhang J; Liu P; Wang L
    Carbohydr Polym; 2021 Apr; 257():117626. PubMed ID: 33541652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels.
    Su CY; Li D; Sun W; Wang LJ; Wang Y
    Food Chem; 2024 Aug; 449():139188. PubMed ID: 38579652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Mechanical Properties of Starch-Based Hydrogels Using Double Network Strategy.
    Sringam J; Pankongadisak P; Trongsatitkul T; Suppakarn N
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of pH on pea protein-hydroxypropyl starch hydrogel based on interpenetrating network and its application in 3D-printing.
    Wang Y; Liu Q; Yang Y; Qiu C; Jiao A; Jin Z
    Food Res Int; 2023 Aug; 170():112966. PubMed ID: 37316054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Cross-Linked Starch-Borax Double Network Hydrogels with Tough and Self-Healing Properties.
    Chen X; Ji N; Li F; Qin Y; Wang Y; Xiong L; Sun Q
    Foods; 2022 Apr; 11(9):. PubMed ID: 35564038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan quaternary ammonium salt-oxidized sodium alginate-glycerol-calcium ion biobased self-healing hydrogels with excellent spontaneous repair performance.
    Zhong L; Peng K; Sun Y; Zhou J; Xiao N; Wang H; Zhang X; Cheng Z
    RSC Adv; 2024 Oct; 14(43):31954-31965. PubMed ID: 39380645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate.
    Jiang YY; Zhu YJ; Li H; Zhang YG; Shen YQ; Sun TW; Chen F
    J Colloid Interface Sci; 2017 Jul; 497():266-275. PubMed ID: 28288372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stretchable and Tough Physical Silk Fibroin-Based Double Network Hydrogels.
    Zhao Y; Guan J; Wu SJ
    Macromol Rapid Commun; 2019 Dec; 40(23):e1900389. PubMed ID: 31692142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity.
    Yu F; Cui T; Yang C; Dai X; Ma J
    Chemosphere; 2019 Dec; 237():124417. PubMed ID: 31356999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Stretchable, Swelling-Resistant, Self-Healed, and Biocompatible Dual-Reinforced Double Polymer Network Hydrogels.
    Fan W; Jensen LR; Dong Y; Deloria AJ; Xing B; Yu D; Smedskjaer MM
    ACS Appl Bio Mater; 2023 Jan; 6(1):228-237. PubMed ID: 36537710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stretchable HA/SA hydrogels for tissue engineering.
    Zhu C; Yang R; Hua X; Chen H; Xu J; Wu R; Cen L
    J Biomater Sci Polym Ed; 2018 Apr; 29(5):543-561. PubMed ID: 29316854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tough, stretchable and compressive alginate-based hydrogels achieved by non-covalent interactions.
    Jing Z; Dai X; Xian X; Du X; Liao M; Hong P; Li Y
    RSC Adv; 2020 Jun; 10(40):23592-23606. PubMed ID: 35517309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan derivative-based double network hydrogels with high strength, high fracture toughness and tunable mechanics.
    Gan S; Xu B; Zhang X; Zhao J; Rong J
    Int J Biol Macromol; 2019 Sep; 137():495-503. PubMed ID: 31276722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dual Cross-Linked Strategy to Construct Moldable Hydrogels with High Stretchability, Good Self-Recovery, and Self-Healing Capability.
    Qin Y; Wang J; Qiu C; Xu X; Jin Z
    J Agric Food Chem; 2019 Apr; 67(14):3966-3980. PubMed ID: 30888158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental biomaterial properties of tough glycosaminoglycan-containing double network hydrogels newly developed using the molecular stent method.
    Higa K; Kitamura N; Kurokawa T; Goto K; Wada S; Nonoyama T; Kanaya F; Sugahara K; Gong JP; Yasuda K
    Acta Biomater; 2016 Oct; 43():38-49. PubMed ID: 27427226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application.
    Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels.
    Liu H; Pan B; Wang Q; Niu Y; Tai Y; Du X; Zhang K
    Chemosphere; 2021 Jan; 263():128240. PubMed ID: 33297187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution 3D Printing of Stretchable Hydrogel Structures Using Optical Projection Lithography.
    Kunwar P; Jannini AVS; Xiong Z; Ransbottom MJ; Perkins JS; Henderson JH; Hasenwinkel JM; Soman P
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1640-1649. PubMed ID: 31833757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.